Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 774-787.doi: 10.11843/j.issn.0366-6964.2025.02.027
• Preventive Veterinary Medicine • Previous Articles Next Articles
WU Jiahui(), SHEN Shiyan(
), DENG Jinbo, WU Haiyang, REN Zhixin, WU Yangbo, HUANG Juan, HUANG Haobin, PAN Weixiong, ZHAO Zengjue, HE Rongxiao, SUN Chongjun, ZHANG Linghua*(
)
Received:
2024-03-22
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZHANG Linghua
E-mail:1142620951@stu.scau.edu.cn;EnshWinter@163.com;lhzhang@scau.edu.cn
CLC Number:
WU Jiahui, SHEN Shiyan, DENG Jinbo, WU Haiyang, REN Zhixin, WU Yangbo, HUANG Juan, HUANG Haobin, PAN Weixiong, ZHAO Zengjue, HE Rongxiao, SUN Chongjun, ZHANG Linghua. Construction of Recombinant Lactococcus lactis Inducible Expressing HA Protein of H5N1 Subtype Avian Influenza Virus and Analysis of Its Immunogenicity in Ducks[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 774-787.
Table 1
Plasmids and strains used in this study"
名称 Names | 特征 Characteristics | 来源 Reference or source |
质粒Plasmids | ||
pNZ8148 | 乳酸菌表达质粒 | 本实验室保存 |
pUC-pgsA | 锚定序列 | 本实验室保存 |
pUC-BmpA | 锚定序列 | 本实验室保存 |
pUC-GW-cA-M6 | 锚定序列 | 本实验室保存 |
pUC19-GFP | 本实验室保存 | |
pUC57-HA0 | 带有信号肽序列SPUsp45 | 苏州金唯智生物科技有限公司合成 |
pUC57-HA1 | HA乳酸菌偏好性密码子优化 | 苏州金唯智生物科技有限公司合成 |
pJW4.1n | 乳酸菌基因组敲入质粒 | 陆军军医大学王竞老师惠赠[ |
菌株Strains | ||
大肠杆菌DH5α | 本实验室保存 | |
大肠杆菌MC1061 | 本实验室保存 | |
乳酸乳球菌NZB | LacZ基因整合到基因组 | 陆军军医大学王竞老师惠赠[ |
Table 2
The primer sequences used in this study"
名称 | 引物序列(5′→3′) |
Name | Primer sequences |
SP F | ATGAAAAAAAAGATTATCTCAGCTATTTT |
SP R | CAATGCAAATTTGATCAGCGTAAACACCTGA |
HA0 F | ATAAGGAGGCACTCAAAATGAAAAAAAAGATTATCTC |
HA0 R | CATATTAAATATTCTCCTCTTAAATGCAAATTCTGCATT |
HA1 F | TCAGGTGTTTACGCTGATCAAATTTGCATTGGCTA |
HA1 R | CATATTAAATATTCTCCTCTAAATACAAATTCTACATTG |
SP-HA-Xho I F | CCGCTCGAGCGGATGAAAAAAAAG |
HA-Xba I R | GCTCTAGAGCTTAAATGCAAATTCTGC |
Pz F | AAGTCGCGTGGCGCGCCAGTCTTATAACTATACTGACAATA |
Ter R | GAAATGATAGGCGCGCCATAAGCAAAAGGCAGCTGAT |
pgsA F | ATGAAAAAAGAACTGAGCTTTCATGAAAAGCTGC |
pgsA R | TGAACCACCACCACCGGAT |
GFP-CM F | ATGAAAAAAAAGATTATCTCAGCTATTTTAA |
GFP-CM R | TTATTTTATTCGTAGATACTGACCAATTAAAATAGTATCGC |
8148 F | CCTGCCCCGTTAGTTGAAGAAGG |
8148 R | GCTTTATCAACTGCTGCTTTTTGGCT |
BmpA-HA1(1)F | AAATAAATTATAAGGAGGCACTCACATGAAAAAACGCGTAATCGCAGTTAG |
BmpA-HA1(1)R | AAATTTGATCTGAACCACCACCACCGGAT |
BmpA-HA1(2)F | TGGTGGTTCAGATCAAATTTGCATTGGCTACCATGC |
BmpA-HA1(2)R | GTTTTCTAATTTTGGTTCAAAGAATTAAATACAAATTCTACATTGTAATGATCCATTTG |
HA1-cA(1)F | ATAAATTATAAGGAGGCACTCACATGAAAAAAAAGATTATCTCAGCTATTTTAATGTCT |
HA1-cA(1)R | CTCCTCCTCCAATACAAATTCTACATTGTAATGATCCATTTGAACACATC |
HA1-cA(2)F | AATTTGTATTGGAGGAGGAGGATCCGGTGGT |
HA1-cA(2)R | GGTTTTCTAATTTTGGTTCAAAGAATTATTTTATTCGTAGATACTGACCAATTAAAATA |
SPHA1-8148 F | TAAATTATAAGGAGGCACTCACATGAAAAAAAAGATTATCTCAGCTATTTTAATGTCTA |
SPHA1-8148 R | GTTTTCTAATTTTGGTTCAAAGAATTAAATACAAATTCTACATTGTAATGATCCATTTG |
SP-GFP F | GTTTACGCTCGTAAAGGCGAAGAGCTGTTCAC |
Nco I-pgsA F | AAATAAATTATAAGGAGGCACTCACATGAAAAAAGAACTGAGCTTTCATGAAAAGCT |
Nco I-BmpA F | AAATAAATTATAAGGAGGCACTCACATGAAAAAACGCGTAATCGCAGTTAG |
Table 3
Experimental animal grouping"
组别 Group | 剂量 Dose | 试验动物/只 Animal numbers |
PBS组 | 100 μL·只-1 | 5 |
NZB-pNZ8148-HA1免疫组 | 1.0×1011 CFU·只-1 | 5 |
NZB-pNZ8148-BmpA-HA1免疫组 | 1.0×1011 CFU·只-1 | 5 |
NZB-pNZ8148-HA1-cA免疫组 | 1.0×1011 CFU·只-1 | 5 |
NZB-HA1-pNZ8148-BmpA-HA1免疫组 | 1.0×1011 CFU·只-1 | 5 |
NZB-HA1-pNZ8148-HA1-cA免疫组 | 1.0×1011 CFU·只-1 | 5 |
Fig. 3
The relative fluorescence intensity of recombinant L. lactis expressing the anchoring sequence-GFP A-D. Different views of NZB-BmpA-GFP, NZB-GFP-cA, NZB-GFP-M6 and NZB-pgsA-GFP under fluorescence microscopy(1 000×); E. the relative fluorescence intensity of NZB-BmpA-GFP, NZB-GFP-cA, NZB-GFP-M6 and NZB-pgsA-GFP measured by enzyme immunoassay, with each value representing the average of three biological replicates. *, ** indicates significant difference between groups, *. P < 0.05, **. P < 0.01"
Fig. 5
The screening of L. lactis with integrated secreted HA gene in the genome A. Growth of NZB-HA0 and NZB-HA1 on GM17 solid medium containing nisin and X-Gal. White recombinant Lactobacillus strains are enclosed in red squares, while non-recombinant Lactobacillus strains appear blue and are not enclosed in red squares; B. Colony PCR identification (M. DL2000 DNA marker; 1-5. NZB-HA0; 6-10. NZB-HA1)"
Fig. 7
Western blot of HA expression in L. lactis with induced secretion combined with surface display 1-3. Precipitate of NZB-HA1-pNZ8148-BmpA-HA1, NZB-HA1-pNZ8148-HA1-cA and NZB-pNZ8148-HA1; 4-8. Supernatant of NZB-HA1-pNZ8148-BmpA-HA1, NZB-HA1-pNZ8148-HA1-cA, NZB-pNZ8148-HA1, NZB-pNZ8148-BmpA-HA1 and NZB-pNZ8148-HA1-cA; 9. Precipitate of NZB-pNZ8148-HA1; 10. Cell membrane fraction of NZB-pNZ8148-BmpA-HA1; 11. Cell membrane fraction of NZB-pNZ8148-HA1-cA"
Fig. 8
HA-specific IgG in duckling serum The HA-specific IgG levels in duckling sera were measured on the 3rd and 10th days post-immunization, with each value representing the average of three biological replicates. * indicates significant difference between groups, *. P < 0.05;# indicates significant difference vs. NZB-PNZ8148-HA1 group. #. P < 0.05"
1 |
WU X X , XIAO L L , LI L J . Research progress on human infection with avian influenza H7N9[J]. Front Med, 2020, 14 (1): 8- 20.
doi: 10.1007/s11684-020-0739-z |
2 |
WIGGINS J , NGUYEN N , WEI W Z , et al. Lactic acid bacterial surface display of scytovirin inhibitors for anti-ebolavirus infection[J]. Front Microbiol, 2023, 14, 1269869.
doi: 10.3389/fmicb.2023.1269869 |
3 |
ZUO C , DING R C , WU X W , et al. Thioester-assisted sortase-A-mediated ligation[J]. Angew Chem Int Ed Engl, 2022, 61 (28): e202201887.
doi: 10.1002/anie.202201887 |
4 |
SONG A A L , IN L L A , LIM S H E , et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16 (1): 55.
doi: 10.1186/s12934-017-0669-x |
5 |
NGUYEN H M , PHAM M L , STELZER E M , et al. Constitutive expression and cell-surface display of a bacterial β-mannanase in Lactobacillus plantarum[J]. Microb Cell Fact, 2019, 18 (1): 76.
doi: 10.1186/s12934-019-1124-y |
6 |
CAO T , LV J , ZHANG L , et al. Selective enrichment and quantification of N-terminal glycine peptides via sortase A mediated ligation[J]. Anal Chem, 2018, 90 (24): 14303- 14308.
doi: 10.1021/acs.analchem.8b03562 |
7 |
CHEN Z J , LIN J Z , MA C J , et al. Characterization of pMC11, a plasmid with dual origins of replication isolated from Lactobacillus casei MCJ and construction of shuttle vectors with each replicon[J]. Appl Microbiol Biotechnol, 2014, 98 (13): 5977- 5989.
doi: 10.1007/s00253-014-5649-z |
8 |
GARBACZ K . Anticancer activity of lactic acid bacteria[J]. Semin Cancer Biol, 2022, 86, 356- 366.
doi: 10.1016/j.semcancer.2021.12.013 |
9 |
DE FILIPPIS F , PASOLLI E , ERCOLINI D . The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health[J]. FEMS Microbiol Rev, 2020, 44 (4): 454- 489.
doi: 10.1093/femsre/fuaa015 |
10 |
LINARES D M , KOK J , POOLMAN B . Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies[J]. J Bacteriol, 2010, 192 (21): 5806- 5812.
doi: 10.1128/JB.00533-10 |
11 |
冯瑜菲, 胡清泉, 张力国, 等. 表达猪圆环病毒3型Cap蛋白重组乳酸乳球菌的构建及免疫原性分析[J]. 中国预防兽医学报, 2022, 44 (11): 1201- 1207.
doi: 10.3969/j.issn.1008-0589.202203054 |
FENG Y F , HU Q Q , ZHANG L G , et al. Construction and immunogenicity evaluation of recombinant Lactococcus lactis expressing the Cap protein of porcine circovirus virus type 3[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44 (11): 1201- 1207.
doi: 10.3969/j.issn.1008-0589.202203054 |
|
12 | 亓秀晔, 刘乃芝, 程福亮, 等. 乳酸菌用作口服疫苗表达载体的应用研究进展[J]. 中国酿造, 2019, 38 (6): 18- 23. |
QI X Y , LIU N Z , CHENG F L , et al. Advances in the application of lactic acid bacteria as oral vaccine expression vector[J]. China Brewing, 2019, 38 (6): 18- 23. | |
13 |
VAN ZYL W F , DEANE S M , DICKS L M T . Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria[J]. Gut Microbes, 2020, 12 (1): 1831339.
doi: 10.1080/19490976.2020.1831339 |
14 |
REUBEN R C , ROY P C , SARKAR S L , et al. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties[J]. J Dairy Sci, 2020, 103 (2): 1223- 1237.
doi: 10.3168/jds.2019-17092 |
15 |
YIN S P , ZHU H B , SHEN M Y , et al. Surface display of heterologous β-galactosidase in food-grade recombinant Lactococcus lactis[J]. Curr Microbiol, 2018, 75 (10): 1362- 1371.
doi: 10.1007/s00284-018-1531-z |
16 | 冯梦蝶, 毛普加, 洪愉, 等. 乳酸乳球菌组成型表面展示载体的构建及鉴定[J]. 中国微生态学杂志, 2015, 27 (1): 1- 5. |
FENG M D , MAO P J , HONG Y , et al. Construction and identification of constitutive surface display vector on Lactococcus lactis[J]. Chinese Journal of Microecology, 2015, 27 (1): 1- 5. | |
17 |
LU Y F , YAN H X , DENG J Z , et al. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis[J]. Microb Cell Fact, 2017, 16 (1): 154.
doi: 10.1186/s12934-017-0770-1 |
18 |
QIN J Y , WANG X W , KONG J , et al. Construction of a food-grade cell surface display system for Lactobacillus casei[J]. Microbiol Res, 2014, 169 (9-10): 733- 740.
doi: 10.1016/j.micres.2014.02.001 |
19 |
LIU Z N , LIAO L Y , CHEN Q , et al. Effects of Hericium erinaceus polysaccharide on immunity and apoptosis of the main immune organs in Muscovy duck reovirus-infected ducklings[J]. Int J Biol Macromol, 2021, 171, 448- 456.
doi: 10.1016/j.ijbiomac.2020.12.222 |
20 |
BASAK S , KANG H J , LEE S H , et al. Influenza vaccine efficacy induced by orally administered recombinant baculoviruses[J]. PLoS One, 2020, 15 (5): e0233520.
doi: 10.1371/journal.pone.0233520 |
21 | 曾显营, 田国彬, 陈化兰. 中国H5/H7亚型禽流感疫苗研制和应用进展[J]. 中国科学: 生命科学, 2023, 53 (12): 1700- 1712. |
ZENG X Y , TIAN G B , CHEN H L . Progress in development and application of H5/H7 avian influenza vaccines in China[J]. Scientia Sinica Vitae, 2023, 53 (12): 1700- 1712. | |
22 |
TSAI C J , SAUNA Z E , KIMCHI-SARFATY C , et al. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima[J]. J Mol Biol, 2008, 383 (2): 281- 291.
doi: 10.1016/j.jmb.2008.08.012 |
23 |
STADLER M , FIRE A . Wobble base-pairing slows in vivo translation elongation in metazoans[J]. RNA, 2011, 17 (12): 2063- 2073.
doi: 10.1261/rna.02890211 |
24 |
QUAX T E F , CLAASSENS N J , SÖLL D , et al. Codon bias as a means to fine-tune gene expression[J]. Mol Cell, 2015, 59 (2): 149- 161.
doi: 10.1016/j.molcel.2015.05.035 |
25 | 王立辉. 高致病性禽流感流行特点及防控[J]. 北方牧业, 2023, (19): 36. |
WANG L H . Epidemiological characteristics and prevention and control of highly pathogenic avian influenza[J]. Beifang Muye, 2023, (19): 36. | |
26 |
ALQAZLAN N , ASTILL J , RAJ S , et al. Strategies for enhancing immunity against avian influenza virus in chickens: a review[J]. Avian Pathol, 2022, 51 (3): 211- 235.
doi: 10.1080/03079457.2022.2054309 |
27 |
ZHANG J , AN D , FAN Y H , et al. Effect of TMUV on immune organs of TMUV infected ducklings[J]. Vet Microbiol, 2021, 255, 109033.
doi: 10.1016/j.vetmic.2021.109033 |
28 | 杨姣姣, 郑宁晨, 张婷, 等. 表达量高、血凝活性好的H3N2流感病毒血凝素(HA)蛋白疫苗的筛选研究[J]. 现代生物医学进展, 2023, 23 (8): 1401-1404, 1429. |
YANG J J , ZHENG N C , ZHANG T , et al. Screening of hemagglutinin (HA) protein vaccine with high expression and good hemagglutination activity for H3N2 influenza virus[J]. Progress in Modern Biomedicine, 2023, 23 (8): 1401-1404, 1429. | |
29 | 花悦, 宋奇珊, 王东东, 等. H9N2禽流感病毒HA蛋白mRNA疫苗的构建表达及鉴定[J]. 中国兽医科学, 2024, 54 (5): 609- 614. |
HUA Y , SONG Q S , WANG D D , et al. Construction and expression and identification of H9N2 avian influenza virus HA protein mRNA vaccine[J]. Chinese Journal of Veterinary Science, 2024, 54 (5): 609- 614. | |
30 | 赵洪梅. H1N1型猪流感病毒血凝素HA1重组乳酸菌的制备和免疫保护效果研究[D]. 长春: 吉林农业大学, 2011: 1-61. |
ZHAO H M. Studies on protective efficacy of the recombinant Lactobacillus plantarum expressing HAl gene of H1N1 Swine influenza virus[D]. Changchun: Jilin Agricultural University, 2011: 1-61. (in Chinese) | |
31 | 李雨欣. 表达H9N2禽流感病毒HA2蛋白重组乳酸菌的构建与免疫效果研究[D]. 泰安: 山东农业大学, 2023: 1-68. |
LI Y X. Construction and immunization of recombinant lactic acid bacteria expressing HA2 protein of H9N2 avian influenza virus[D]. Tai'an: Shandong Agricultural University, 2023: 1-68. (in Chinese) | |
32 |
JIANG Y L , YANG G L , WANG Q , et al. Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB[J]. J Biotechnol, 2017, 259, 6- 14.
doi: 10.1016/j.jbiotec.2017.08.011 |
33 |
SIM AČG I AČG S , BERLEC A , STOPINŠEK S , et al. Engineered and wild-type L. lactis promote anti-inflammatory cytokine signalling in inflammatory bowel disease patient's mucosa[J]. World J Microbiol Biotechnol, 2019, 35 (3): 45.
doi: 10.1007/s11274-019-2615-z |
34 |
CRONIN M , MORRISSEY D , RAJENDRAN S , et al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors[J]. Mol Ther, 2010, 18 (7): 1397- 1407.
doi: 10.1038/mt.2010.59 |
35 | 周建波, 胡莉萍, 黄河, 等. 重组羊奇异变形杆菌ompA乳酸乳球菌的构建及其在小鼠体内的定植规律检测[J]. 中国兽医学报, 2018, 38 (1): 142- 147. |
ZHOU J B , HU L P , HUANG H , et al. Construction of recombinant Lactococcus lactis-expressing sheep proteus mirabilis ompA and detection of its colonization in mice[J]. Chinese Journal of Veterinary Science, 2018, 38 (1): 142- 147. | |
36 | LEI H , SHENG Z N , DING Q , et al. Evaluation of oral immunization with recombinant avian influenza virus HA1 displayed on the Lactococcus lactis surface and combined with the mucosal adjuvant cholera toxin subunit B[J]. Clin Vaccine Immunol, 2011, 18 (7): 1046- 1051. |
37 | ZADRAVEC P , MAVRI AČG A , BOGOVI AČG MATIJAŠIĆ B , et al. Engineering BmpA as a carrier for surface display of IgG-binding domain on Lactococcus lactis[J]. Protein Eng Des Sel, 2014, 27 (1): 21- 27. |
38 | WIECZOREK A S , MARTIN V J . Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis[J]. Microb Cell Fact, 2010, 9, 69. |
39 | FREDRIKSEN L , KLEIVELAND C R , OLSEN HULT L T , et al. Surface display of N-terminally anchored invasin by Lactobacillus plantarum activates NF-κB in monocytes[J]. Appl Environ Microbiol, 2012, 78 (16): 5864- 5871. |
[1] | LI Anben, FU Nana, LUO Xiaoping, LI Junyan, LIU Yang. Progress in the Study of Drug Resistance and Its Reversal in Haemonchus contortus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 523-533. |
[2] | FANG Shaoqin, YIN Hongwei, LI Jie, XU Hu, WAN Kui, MU Yulian. A Longitudinal Study of Behavioral Characteristics in Kunming Dogs Aged 3 to 12 Months [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 657-665. |
[3] | YU Jiangwei, CHENG Huimin, LIN Jian, YANG Baolin, HUANG Cheng, YANG Zhiyuan, HU Ge. Establishment and Application of TaqMan Fluorescent Quantitative PCR Detection Method for Duck Plague Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 765-773. |
[4] | WU Pingxian, WANG Junge, DIAO Shuqi, CHAI Jie, ZHA Lin, GUO Zongyi, CHEN Hongyue, LONG Xi. Analysis of Genetic Architecture Characteristics and Selection Signature by Imputed Whole Genome Sequencing Data in Rongchang Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 147-158. |
[5] | WU Shuang, YIN Na, YU Mohan, PING Yuyu, BAI Hao, CHEN Shihao, CHANG Guobin. The Effect of TRIM39.2 Overexpression on the Transcriptional Expression of Chicken Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 178-188. |
[6] | FAN Dingkun, ZHANG Tao, JIAO Shuai, LU Wei, FU Yuze, YANG Hong, TU Yan, SHI Lingyuan, ZHANG Naifeng. Evaluation of Relative Bioavailability of Tricalcium Phosphate Produced by High-temperature Sintering Method in Weaned Piglets Based on Slope Ratio Method [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 269-280. |
[7] | JIA Xinyue, MA Jing, PU Na, ZHAO Wenqing, CHEN Xuke, ZHANG Yanyan, SUN Yan, BO Xinwen, WANG Zhengrong. Construction and Evaluation of a Surface-displayed Saccharomyces cerevisiae EBY100/PYD1-EgM123 for Echinococcus granulosus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 378-391. |
[8] | WANG Yi, HOU Lulu, FANG Fei, GAO Linying, XIE Shumin, WANG Yu. Fluoride Induced Small Intestine Oxidative Damage in Broilers via Autophagy and Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 442-454. |
[9] | Hongyu FU, Yue LI, Han CUI, Jiuzhi LI, Wanxue XU, Xi WANG, Ruifeng FAN. The Mechanism of Long-Chain acyl-CoA Synthetase 4-mediated Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3792-3801. |
[10] | Yuxin GAO, Qing LIU, Jilan CHEN, Hui MA. Research Advances in the Mechanism of Parasite-host Interaction Mediated by miRNAs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3812-3823. |
[11] | Xiangchen LI, Linnan WANG, Zhengqing YU, Li ZHANG, Chenchen YANG, Liangli SONG. Quercetin Inhibits Autophagy to Restore LTA-induced Tight Junction Function in Mammary Alveolar Cells-large T Antigen [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3887-3896. |
[12] | Huancheng LIAO, Zhengwang SHI, Juncong LUO, Wanying WANG, Lu FENG, Jing ZHOU, Fan ZHANG, Xintai SHI, Hong TIAN. Preparation of Monoclonal Antibody against Cathay Topotype of FMDV Type O and Development of Double Antibody Sandwich ELISA for Cathay Topotype of FMDV Type O [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4012-4020. |
[13] | Kangning ZHAO, Zhonglong YANG, Yi CHEN, Chuncheng ZHU, Yunfei GUO, Yuncong YIN, Tao QIN, Sujuan CHEN, Daxin PENG. Genetic Variation Analysis of Sixteen Novel H3N3 Subtype Avian Influenza Viruses [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4029-4040. |
[14] | Wei LIU, Jiayi MA, Haoyu GENG, Tian XIE, Sunan MIAO, Zongjie LIAO, Shizhong GENG. Isolation, Identification and Characterization of a Broad Spectrum Salmonella Phage [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4061-4068. |
[15] | Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||