Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 492-500.doi: 10.11843/j.issn.0366-6964.2025.02.002
• Review • Previous Articles Next Articles
Received:
2024-03-20
Online:
2025-02-23
Published:
2025-02-26
Contact:
HE Ran
E-mail:2022303116@stu.sicau.edu.cn;ranhe1991@sicau.edu.cn
CLC Number:
GUO Maochuan, HE Ran. Research Progress of Functional Genes in Sarcoptes scabiei and Its Application[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 492-500.
1 |
MORONI B , ROSSI L , BERNIGAUD C , et al. Zoonotic episodes of scabies: a global overview[J]. Pathogens, 2022, 11 (2): 213.
doi: 10.3390/pathogens11020213 |
2 | FISCHER K, LU H, FERNANDO D D, et al. Scabies multi-omics to identify novel diagnostic or therapeutic targets[M]//FISCHER K, CHOSIDOW O. Scabies. Cham: Springer, 2023: 91-102. |
3 |
RIDER S D , MORGAN M S , ARLIAN L G . Draft genome of the scabies mite[J]. Parasit Vectors, 2015, 8, 585.
doi: 10.1186/s13071-015-1198-2 |
4 | MOFIZ E , DEBORAH C , SEEMANN T , et al. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis[J]. GigaScience, 2016, 5 (1): 23. |
5 |
MOFIZ E , SEEMANN T , BAHLO M , et al. Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections[J]. PLoS Negl Trop Dis, 2016, 10 (2): e0004384.
doi: 10.1371/journal.pntd.0004384 |
6 |
KORHONEN P K , GASSER R B , MA G X , et al. High-quality nuclear genome for Sarcoptes scabiei-A critical resource for a neglected parasite[J]. PLoS Negl Trop Dis, 2020, 14 (10): e0008720.
doi: 10.1371/journal.pntd.0008720 |
7 |
XU J , WANG Q H , WANG S , et al. Comparative genomics of Sarcoptes scabiei provide new insights into adaptation to permanent parasitism and within-host species divergence[J]. Transbound Emerg Dis, 2022, 69 (6): 3468- 3484.
doi: 10.1111/tbed.14706 |
8 |
HU L , ZHAO Y E , YANG Y J , et al. De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis[J]. Parasitol Res, 2016, 115 (7): 2661- 2670.
doi: 10.1007/s00436-016-5013-6 |
9 |
HE R , GU X B , LAI W M , et al. Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response[J]. PLoS One, 2017, 12 (5): e0177733.
doi: 10.1371/journal.pone.0177733 |
10 |
AKUTA T , MINEGISHI D , KIDO N , et al. Development of a rapid scabies immunodiagnostic assay based on transcriptomic analysis of Sarcoptes scabiei var.nyctereutis[J]. Sci Rep, 2021, 11 (1): 6455.
doi: 10.1038/s41598-021-85290-7 |
11 |
AL-DABBAGH J , YOUNIS R , ISMAIL N . The currently available diagnostic tools and treatments of scabies and scabies variants: an updated narrative review[J]. Medicine (Baltimore), 2023, 102 (21): e33805.
doi: 10.1097/MD.0000000000033805 |
12 | GUILLOT J, LOSSON B, DELSART M, et al. Sarcoptic mange in wild and domestic animals[M]//FISCHER K, CHOSIDOW O. Scabies. Cham: Springer, 2023: 313-343. |
13 |
ABSIL G , LEBAS E , LIBON F , et al. Scabies and therapeutic resistance: current knowledge and future perspectives[J]. JEADV Clin Pract, 2022, 1 (3): 157- 164.
doi: 10.1002/jvc2.25 |
14 |
JOHNSON-ARBOR K . Ivermectin: a mini-review[J]. Clin Toxicol (Phila), 2022, 60 (5): 571- 575.
doi: 10.1080/15563650.2022.2043338 |
15 |
MOUNSEY K E , DENT J A , HOLT D C , et al. Molecular characterisation of a pH-gated chloride channel from Sarcoptes scabiei[J]. Invert Neurosci, 2007, 7 (3): 149- 156.
doi: 10.1007/s10158-007-0050-6 |
16 |
KHALIL S , ABBAS O , KIBBI A G , et al. Scabies in the age of increasing drug resistance[J]. PLoS Negl Trop Dis, 2017, 11 (11): e0005920.
doi: 10.1371/journal.pntd.0005920 |
17 |
MOUNSEY K E , PASAY C J , ARLIAN L G , et al. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites[J]. Parasit Vectors, 2010, 3, 43.
doi: 10.1186/1756-3305-3-43 |
18 |
PETTERSSON E U , LJUNGGREN E L , MORRISON D A , et al. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei[J]. Int J Parasitol, 2005, 35 (1): 39- 48.
doi: 10.1016/j.ijpara.2004.09.006 |
19 |
DOUGALL A , HOLT D C , FISCHER K , et al. Identification and characterization of Sarcoptes scabiei and Dermatophagoides pteronyssinus glutathione S-transferases: implication as a potential major allergen in crusted scabies[J]. Am J Trop Med Hyg, 2005, 73 (5): 977- 984.
doi: 10.4269/ajtmh.2005.73.977 |
20 | MOLIN E U , MATTSSON J G . Effect of acaricides on the activity of glutathione transferases from the parasitic mite Sarcoptes scabiei[J]. Parasitology, 2008, 135 (Pt 1): 115- 123. |
21 | 李爽, 刘群. 寄生虫谷胱甘肽转移酶的研究进展[J]. 中国兽医科学, 2021, 51 (1): 113- 118. |
LI S , LIU Q . Advances in the research of glutathione S-transferase in parasites[J]. Chinese Veterinary Science, 2021, 51 (1): 113- 118. | |
22 |
PASAY C , ARLIAN L , MORGAN M , et al. High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites[J]. Med Vet Entomol, 2008, 22 (1): 82- 88.
doi: 10.1111/j.1365-2915.2008.00716.x |
23 |
RIEBENBAUER K , PURKHAUSER K , WALOCHNIK J , et al. Detection of a knockdown mutation in the voltage-sensitive sodium channel associated with permethrin tolerance in Sarcoptes scabiei var. hominis mites[J]. J Eur Acad Dermatol Venereol, 2023, 37 (11): 2355- 2361.
doi: 10.1111/jdv.19288 |
24 |
WANG T , GASSER R B , KORHONEN P K , et al. Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions[J]. PLoS Negl Trop Dis, 2022, 16 (12): e0010946.
doi: 10.1371/journal.pntd.0010946 |
25 | 陈奕君, 周璇, 谢跃. 动物内寄生虫丝氨酸蛋白酶研究进展[J]. 动物医学进展, 2023, 44 (10): 80- 84. |
CHEN Y J , ZHOU X , XIE Y . Advance in serine proteases of animal endoparasites[J]. Progress in Veterinary Medicine, 2023, 44 (10): 80- 84. | |
26 |
BECKHAM S A , BOYD S E , REYNOLDS S , et al. Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei[J]. J Biol Chem, 2009, 284 (49): 34413- 34422.
doi: 10.1074/jbc.M109.061911 |
27 |
FERNANDO D D , FISCHER K . Proteases and pseudoproteases in parasitic arthropods of clinical importance[J]. FEBS J, 2020, 287 (19): 4284- 4299.
doi: 10.1111/febs.15546 |
28 |
MAHMOOD W , VIBERG L T , FISCHER K , et al. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules[J]. PLoS Negl Trop Dis, 2013, 7 (11): e2525.
doi: 10.1371/journal.pntd.0002525 |
29 | JALOLIDINOVNA I Z . Morphology and histology of skin[J]. Texas J Med Sci, 2023, 16, 52- 56. |
30 | 杨妙贤, 黄灏, 黄一诺, 等. 天冬氨酸蛋白酶与寄生虫[J]. 热带医学杂志, 2019, 19 (7): 932- 936. |
YANG M X , HUANG H , HUANG Y N , et al. Aspartic proteases of parasites[J]. Journal of Tropical Medicine, 2019, 19 (7): 932- 936. | |
31 |
INAM W , WALTON S , KHAN S , et al. Molecular drug targets for scabies: a medicinal chemistry perspective[J]. Future Med Chem, 2020, 12 (24): 2225- 2238.
doi: 10.4155/fmc-2020-0182 |
32 |
KHAN A , SOHAIB M , ULLAH R , et al. Structure-based in silico design and in vitro acaricidal activity assessment of Acacia nilotica and Psidium guajava extracts against Sarcoptes scabiei var.cuniculi[J]. Parasitol Res, 2022, 121 (10): 2901- 2915.
doi: 10.1007/s00436-022-07615-3 |
33 |
FISCHER K , LANGENDORF C G , IRVING J A , et al. Structural mechanisms of inactivation in scabies mite serine protease paralogues[J]. J Mol Biol, 2009, 390 (4): 635- 645.
doi: 10.1016/j.jmb.2009.04.082 |
34 |
BERGSTRÖM F C , REYNOLDS S , JOHNSTONE M , et al. Scabies mite inactivated serine protease paralogs inhibit the human complement system[J]. J Immunol, 2009, 182 (12): 7809- 7817.
doi: 10.4049/jimmunol.0804205 |
35 |
REYNOLDS S L , PIKE R N , MIKA A , et al. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway[J]. PLoS Negl Trop Dis, 2014, 8 (5): e2872.
doi: 10.1371/journal.pntd.0002872 |
36 |
SWE P M , FISCHER K . A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth[J]. PLoS Negl Trop Dis, 2014, 8 (6): e2928.
doi: 10.1371/journal.pntd.0002928 |
37 |
SWE P M , CHRISTIAN L D , LU H C , et al. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes- An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S.pyogenes to infect mite-induced skin lesions[J]. PLoS Negl Trop Dis, 2017, 11 (3): e0005437.
doi: 10.1371/journal.pntd.0005437 |
38 |
MIKA A , GOH P , HOLT D C , et al. Scabies mite peritrophins are potential targets of human host innate immunity[J]. PLoS Negl Trop Dis, 2011, 5 (9): e1331.
doi: 10.1371/journal.pntd.0001331 |
39 |
FERNANDO D D , REYNOLDS S L , HARTEL G , et al. A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis[J]. PLoS Negl Trop Dis, 2021, 15 (1): e0008997.
doi: 10.1371/journal.pntd.0008997 |
40 | WILLIS C , FISCHER K , WALTON S F , et al. Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces[J]. Am J Trop Med Hyg, 2006, 75 (4): 683- 687. |
41 | MIKA A , REYNOLDS S L , MOHLIN F C , et al. Novel scabies mite serpins inhibit the three pathways of the human complement system[J]. PLoS One, 2012, 7 (7): e40489. |
42 | MIKA A , REYNOLDS S L , PICKERING D , et al. Complement inhibitors from scabies mites promote streptococcal growth-a novel mechanism in infected epidermis?[J]. PLoS Negl Trop Dis, 2012, 6 (7): e1563. |
43 | BERNIGAUD C, TAYLOR S, FISCHER K. Scabies-associated microbiota[M]//FISCHER K, CHOSIDOW O. Scabies. Cham: Springer, 2023: 103-117. |
44 | SWE P M , ZAKRZEWSKI M , WADDELL R , et al. High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp.[J]. Sci Rep, 2019, 9 (1): 11744. |
45 | BERNIGAUD C , ZAKRZEWSKI M , TAYLOR S , et al. First description of the composition and the functional capabilities of the skin microbial community accompanying severe scabies infestation in humans[J]. Microorganisms, 2021, 9 (5): 907. |
46 | NÆSBORG-NIELSEN C , EISENHOFER R , FRASER T A , et al. Sarcoptic mange changes bacterial and fungal microbiota of bare-nosed wombats (Vombatus ursinus)[J]. Parasit Vectors, 2022, 15 (1): 323. |
47 | LI S R , WANG J , TIAN X , et al. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects[J]. Front Immunol, 2023, 14, 905467. |
48 | FERNANDO D D , REYNOLDS S L , ZAKRZEWSKI M , et al. Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei[J]. Parasit Vectors, 2018, 11 (1): 301. |
49 | XU Y T , XU Z Y , GU X B , et al. Immunomodulatory effects of two recombinant arginine kinases in Sarcoptes Scabiei on host peripheral blood mononuclear cells[J]. Front Immunol, 2022, 13, 1035729. |
50 | XU Z Y , XU Y T , GU X B , et al. Effects of Sarcoptes scabiei translationally controlled tumor protein (TCTP) on histamine release and degranulation of KU812 cells[J]. Int J Mol Sci, 2022, 23 (21): 12865. |
51 | NÆSBORG-NIELSEN C , WILKINSON V , MEJIA-PACHECO N , et al. Evidence underscoring immunological and clinical pathological changes associated with Sarcoptes scabiei infection: synthesis and meta-analysis[J]. BMC Infect Dis, 2022, 22 (1): 658. |
52 | HE R , ZHANG Q , XU L Y , et al. Characterization of a novel galectin in Sarcoptes scabiei and its role in regulating macrophage functions[J]. Front Microbiol, 2023, 14, 1251475. |
53 | NWUFOH O C , SADIQ A N , EMIKPE B O . The seroprevalence of Sarcoptes scabiei var.canis and its associated risk factors in dogs in Ibadan, Southwest Nigeria[J]. J Immunoassay Immunochem, 2019, 40 (5): 473- 484. |
54 | HAAS C , ROSSI S , MEIER R , et al. Evaluation of a commercial ELISA for the detection of antibodies to Sarcoptes scabiei in wild boar (Sus scrofa)[J]. J Wildl Dis, 2015, 51 (3): 729- 733. |
55 | RAMBOZZI L , MENZANO A , LAVIN S , et al. Biotin-avidin amplified ELISA for detection of antibodies to Sarcoptes scabiei in chamois (Rupicapra spp.)[J]. Vet Res, 2004, 35 (6): 701- 708. |
56 | SHEN N X , HE R , LIANG Y Q , et al. Expression and characterisation of a Sarcoptes scabiei protein tyrosine kinase as a potential antigen for scabies diagnosis[J]. Sci Rep, 2017, 7 (1): 9639. |
57 | XU J , HUANG X , HE M L , et al. Identification of a novel PYP-1 gene in Sarcoptes scabiei and its potential as a serodiagnostic candidate by indirect-ELISA[J]. Parasitology, 2018, 145 (6): 752- 761. |
58 | XU J , HUANG X , DONG X W , et al. Serodiagnostic potential of alpha-enolase from Sarcoptes scabiei and its possible role in host-mite interactions[J]. Front Microbiol, 2018, 9, 1024. |
59 | HE R , SHEN N X , ZHANG H J , et al. Molecular characteristics and serodiagnostic potential of chitinase-like protein from Sarcoptes scabiei[J]. Oncotarget, 2017, 8 (48): 83995- 84005. |
60 | RAMPTON M , WALTON S F , HOLT D C , et al. Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection[J]. PLoS One, 2013, 8 (6): e65354. |
61 | SHEN N X , CHEN Y H , WEI W R , et al. Comparative analysis of the allergenic characteristics and serodiagnostic potential of recombinant chitinase-like protein-5 and -12 from Sarcoptes scabiei[J]. Parasit Vectors, 2021, 14 (1): 148. |
62 | 李鑫, 唐志强, 张浩吉, 等. 疥螨Sar s 14.3过敏原蛋白原核表达及间接ELISA方法的建立[J]. 中国人兽共患病学报, 2023, 39 (1): 28- 37. |
LI X , TANG Z Q , ZHANG H J , et al. Prokaryotic expression of Sar s 14.3 allergen from Sarcoptes scabiei and establishment of an indirect ELISA method[J]. Chinese Journal of Zoonoses, 2023, 39 (1): 28- 37. | |
63 | NAZ S , DESCLOZEAUX M , MOUNSEY K E , et al. Characterization of Sarcoptes scabiei tropomyosin and paramyosin: immunoreactive allergens in scabies[J]. Am J Trop Med Hyg, 2017, 97 (3): 851- 860. |
64 | CASAIS R , MILLÁN J , ROSELL J M , et al. Evaluation of an ELISA using recombinant Ssλ20ΔB3 antigen for the serological diagnosis of Sarcoptes scabiei infestation in domestic and wild rabbits[J]. Vet Parasitol, 2015, 214 (3-4): 315- 321. |
65 | ZHENG Y , HE R , HE M L , et al. Characterization of Sarcoptes scabiei cofilin gene and assessment of recombinant cofilin protein as an antigen in indirect-ELISA for diagnosis[J]. BMC Infect Dis, 2016, 16, 21. |
66 | HE R , SHEN N X , LIN H , et al. Molecular characterization of calmodulin from Sarcoptes scabiei[J]. Parasitol Int, 2017, 66 (2): 1- 6. |
67 | ZHANG R H , ZHENG W P , WU X H , et al. Characterisation and analysis of thioredoxin peroxidase as a potential antigen for the serodiagnosis of sarcoptic mange in rabbits by dot-ELISA[J]. BMC Infect Dis, 2013, 13, 336. |
68 | MA Z T , GUO J N , JIANG L , et al. Lateral flow immunoassay (LFIA) for dengue diagnosis: recent progress and prospect[J]. Talanta, 2024, 267, 125268. |
69 | 贾新月, 马静, 张艳艳, 等. 动物寄生虫口服疫苗研究进展[J]. 中国畜牧兽医, 2022, 49 (9): 3569- 3580. |
JIA X Y , MA J , ZHANG Y Y , et al. Research progress on oral vaccine of animal parasites[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (9): 3569- 3580. | |
70 | 古小彬. 兔疥螨虫株的分子分类及其疫苗研究[D]. 雅安: 四川农业大学, 2009. |
GU X B. The study of molecular taxomomic status about scabies mites isolated from rabbits and vaccine in Sarcoptes scabiei[D]. Ya'an: Sichuan Agricultural University, 2009. (in Chinese) | |
71 | GU X B , XIE Y , WANG S X , et al. Immune response induced by candidate Sarcoptes scabiei var.cuniculi DNA vaccine encoding paramyosin in mice[J]. Exp Appl Acarol, 2014, 63 (3): 401- 412. |
72 | SHEN N X , ZHANG H J , REN Y J , et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits[J]. Parasit Vectors, 2018, 11 (1): 599. |
73 | SHEN N X , WEI W R , CHEN Y H , et al. An antibody persistent and protective two rSsCLP-based subunit cocktail vaccine against Sarcoptes scabiei in a rabbit model[J]. Vaccines (Basel), 2020, 8 (1): 129. |
74 | SHEN N X , WEI W R , CHEN Y H , et al. Vaccination with a cocktail vaccine elicits significant protection against Sarcoptes scabiei in rabbits, whereas the multi-epitope vaccine offers limited protection[J]. Exp Parasitol, 2023, 245, 108442. |
75 | FERNANDO D D , KORHONEN P K , GASSER R B , et al. An RNA interference tool to silence genes in Sarcoptes scabiei eggs[J]. Int J Mol Sci, 2022, 23 (2): 873. |
[1] | CAO Jinkang, ZHANG Chun, WANG Jiayao, LI Xiaotong, WANG Pengyu, FANG Yingyan, ZHANG Yu, DING Ning, JIANG Li. Proteomic Analysis of Sperm with Different Freezability in Chinese Holstein Bulls [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1052-1061. |
[2] | MIN Xiangyu, WEI Jiali, XU Biao, LIU Huitao, ZHENG Junjun, WANG Guiwu. Full-length Transcriptome Sequencing of Sika Deer Antler and Mining of Antler Yield-related Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5549-5566. |
[3] | HU Xiangyun, CAO Yanhong, LÜ Lingyan, LIU Zheng, HUANG Facai, WU Zhuyue, XIAO Zhengzhong. Nanobodies and Their Research Status in Veterinary Field [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3164-3172. |
[4] | WANG Lin, MA Li, ZHANG Bo, DENG Jun, ZHANG Hao, OUYANG Xiaofang, YAN Dawei, DONG Xinxing. Key Genes and Regulatory Network Analysis of Lipid Metabolism Differences between Back Fat and Abdominal Fat of Large Diqing Tibetan Pigs at Different Growth Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 520-533. |
[5] | Lü Ruoyi, SI Xiaohui, SUN Zhigang, SHI Xiaomin, LIU Xiaoye. Drug Resistance Situation of Streptococcus suis and Prevention Measures of Infections [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4920-4933. |
[6] | LIU Xiaowen, ZHANG Qing, SONG Xinhui, LUO Yanbo, HU Ming, LI Lulu, QI Jing, ZHANG Yin, ZHAO Xiaonan, LIU Yuqing. Effect of Phage on the Reduction of Rotten Eggs Caused by Pseudomonas aeruginosa [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1756-1763. |
[7] | DAI Xueyu, ZHANG Qianyi, XU Lu, ZHAO Qizu, WANG Qin, XIA Yingju. Research Progress and Application of CRISPR/Cas9 Gene Editing Technology in Prevention and Control of Important Swine Virus Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 943-951. |
[8] | KAN Liugang, LIU Yan, WU Yuanyuan, FAN Wenxiao, WANG Zhong. Advances in Biological Prevention and Control of Avian Necrotic Enteritis [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(6): 1123-1134. |
[9] | ZHANG Yong-ning, WU Shao-qiang, LIN Xiang-mei. The Research Progress of Senecaviral Disease [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(8): 1381-1388. |
[10] | ZHANG Yong-ning,WU Shao-qiang,LIN Xiang-mei. The Research Progress of Schmallenberg Disease [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(7): 1029-1037. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||