Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (11): 5072-5084.doi: 10.11843/j.issn.0366-6964.2024.11.024
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
Zhou YU1(), Baigao YANG1, Chongyang LI1, Peipei ZHANG1, Jianhua CAO1, Yifan NIU1, Guangsheng QIN2, Xueming ZHAO1,*(
)
Received:
2024-05-09
Online:
2024-11-23
Published:
2024-11-30
Contact:
Xueming ZHAO
E-mail:yz.zhouyu@qq.com;zhaoxueming@caas.cn
CLC Number:
Zhou YU, Baigao YANG, Chongyang LI, Peipei ZHANG, Jianhua CAO, Yifan NIU, Guangsheng QIN, Xueming ZHAO. DIA Quantitative Proteomics Analysis of Buffalo Saliva at Different Estrus Stages[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5072-5084.
Fig. 1
Differential abundance proteins screening and clustering analysis A. Differential abundance proteins volcano diagrams during proestrus and estrus; B. Differential abundance proteins volcano diagrams during estrus and metestrus; C. Differential abundance proteins clustering heatmap during proestrus and estrus; D. Differential abundance proteins clustering heatmap during estrus and metestrus"
Table 1
Differentially expressed proteins associated with reproduction"
名称缩写 Abbreviation | 名称或注释 Name or annotation | BT vs. AT组 变化倍数 Fold change | BT vs. CT组 变化倍数 Fold change | BT vs. AT组 P值 P value | BT vs. CT组 P值 P value |
CBL | E3泛素蛋白连接酶CBL亚型X1 | +3.81 | +2.29 | 0.009 | 0.04 |
ARPC1B | 肌动蛋白相关蛋白2/3复合物亚基1B | +2.11 | +1.92 | 0.02 | 0.04 |
SOD1 | 超氧化物歧化酶[Cu-Zn] | +0.53 | +0.97 | 0.02 | 0.87 |
SPP1 | 骨桥蛋白 | +1.65 | +0.37 | 0.03 | 0.11 |
Table 2
Signaling pathway analysis of reproduction-associated differentially expressed proteins in the estrus vs. proestrus comparison group"
MapID | 通路 Pathway | 与该通路相关的差异蛋白的数目 Number of differential proteins associated with the pathway | P值 P value | 代表性蛋白质 Typical protein |
map04914 | 孕酮介导的卵母细胞成熟 | 2 | 0.03 | RPS6KA3、KRAS |
map04012 | ErbB信号通路 | 2 | 0.07 | CBL、KRAS |
map04371 | Apelin信号通路 | 2 | 0.09 | SPP1、KRAS |
map04919 | 甲状腺激素信号途径 | 2 | 0.06 | KRAS |
map04150 | mTOR信号通路 | 4 | 0.003 | RPS6KA3、KRAS |
Table 3
Signaling pathway analysis of reproduction-associated differentially expressed proteins in the estrus vs. metestrus comparison group"
MapID | 通路 Pathway | 与该通路相关的差异蛋白的数目 Number of differential proteins associated with the pathway | P值 P value | 代表性蛋白质 Typical protein |
map00270 | 半胱氨酸和蛋氨酸代谢 | 2 | 0.04 | LDHB、SMS |
map04910 | 胰岛素信号通路 | 2 | 0.09 | CBL |
1 | 刘演景, 朱婧, 刘畅. 论广西水牛奶产业发展路径[J]. 中国奶牛, 2021, (7): 61- 64. |
LIU Y J , ZHU J , LIU C . Development path of Guangxi buffalo milk industry[J]. China Dairy Cattle, 2021, (7): 61- 64. | |
2 |
SINGHA S , PANDEY M , JAISWAL L , et al. Salivary cell-free HSD17B1 and HSPA1A transcripts as potential biomarkers for estrus identification in buffaloes (Bubalus bubalis)[J]. Anim Biotechnol, 2023, 34 (7): 2554- 2564.
doi: 10.1080/10495398.2022.2105228 |
3 |
SINGH P , GOLLA N , SINGH P , et al. Salivary miR-16, miR-191 and miR-223: intuitive indicators of dominant ovarian follicles in buffaloes[J]. Mol Genet Genomics, 2017, 292 (5): 935- 953.
doi: 10.1007/s00438-017-1323-3 |
4 |
ACHIRAMAN S , ARCHUNAN G , SANKARGANESH D , et al. Biochemical analysis of female mice urine with reference to endocrine function: a key tool for estrus detection[J]. Zoolog Sci, 2011, 28 (8): 600- 605.
doi: 10.2108/zsj.28.600 |
5 | 贾银海. 基于唾液蛋白组学开发鉴定水牛发情方法的研究[D]. 南宁: 广西大学, 2018. |
JIA Y H. Research on the estrus identification method of the development based on the salivary proteomics in the buffalo[D]. Nanning: Guangxi University, 2018. (in Chinese) | |
6 | 张春梅, 席丽, 李志强, 等. 奶牛的发情鉴定方法比较[J]. 当代畜禽养殖业, 2019, (1): 4- 7. |
ZHANG C M , XI L , LI Z Q , et al. Comparison of estrus identification methods of dairy cows[J]. Modern Animal Husbandry, 2019, (1): 4- 7. | |
7 | 秦博文. 浅谈奶牛的发情鉴定与人工授精操作[J]. 农业开发与装备, 2019, (5): 238- 239. |
QIN B W . Discussion on estrus Identification and artificial insemination of dairy cows[J]. Agricultural Development & Equipments, 2019, (5): 238- 239. | |
8 | 蒋晓新, 刘炜, 魏星远, 等. 运用计步器鉴定泌乳盛期荷斯坦奶牛的发情效果研究[J]. 安徽农业科学, 2013, 41 (15): 6728-6729, 6732. |
JIANG X X , LIU W , WEI X Y , et al. Study on the effects of identifying the estrus of Holstein cows during peak lactation by using pedometer[J]. Journal of Anhui Agricultural Sciences, 2013, 41 (15): 6728-6729, 6732. | |
9 | 魏倩倩. 基于DIA蛋白质组学探究牦牛妊娠早中期胎盘组织中CTNNB1/CDH1的表达定位及功能[D]. 兰州: 甘肃农业大学, 2023. |
WEI Q Q. Study on the expression and function of CTNNB1/CDH1 in placenta of yak during early and middle pregnancy based on DIA proteomics[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese) | |
10 |
MUTHUKUMAR S , RAJKUMAR R , RAJESH D , et al. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus[J]. FASEB J, 2014, 28 (11): 4700- 4709.
doi: 10.1096/fj.14-252288 |
11 | LAMKIN M S , OPPENHEIM F G . Structural features of salivary function[J]. Crit Rev Oral Biol Med, 1993, 4 (3-4): 251- 259. |
12 |
LEVINE M J . Salivary macromolecules. A structure/function synopsis[J]. Ann N Y Acad Sci, 1993, 694, 11- 16.
doi: 10.1111/j.1749-6632.1993.tb18337.x |
13 | 辛海云, 孟繁明, 胡斌, 等. 唾液在家畜发情鉴定中的应用进展[J]. 畜牧与兽医, 2020, 52 (7): 136- 139. |
XIN H Y , MENG F M , HU B , et al. Application of saliva in animal estrus detection[J]. Animal Husbandry & Veterinary Medicine, 2020, 52 (7): 136- 139. | |
14 | 贾银海, 李芳芳, 蒋世强, 等. 水牛发情周期生殖激素变化规律及唾液结晶的分析[J]. 中国畜牧兽医, 2019, 46 (4): 1101- 1107. |
JIA Y H , LI F F , JIANG S Q , et al. The variations and correlation analysis of saliva reproduction hormones and crystallization patterns during estrus cycle in buffaloes[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46 (4): 1101- 1107. | |
15 | 董智豪, 时玉新, 郭冠华, 等. 母牛不同发情阶段唾液化合物的比较分析[J]. 畜牧兽医学报, 2023, 54 (11): 4636- 4652. |
DONG Z H , SHI Y X , GUO G H , et al. Comparative analysis of salivary compounds in different estrous stages of cows[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (11): 4636- 4652. | |
16 |
SHASHIKUMAR N G , BAITHALU R K , BATHLA S , et al. Global proteomic analysis of water buffalo (Bubalus bubalis) saliva at different stages of estrous cycle using high throughput mass spectrometry[J]. Theriogenology, 2018, 110, 52- 60.
doi: 10.1016/j.theriogenology.2017.12.046 |
17 |
KUMAR A , DUMASIA K , GAONKAR R , et al. Estrogen and androgen regulate actin-remodeling and endocytosis-related genes during rat spermiation[J]. Mol Cell Endocrinol, 2015, 404, 91- 101.
doi: 10.1016/j.mce.2014.12.029 |
18 |
KUMAR A , DUMASIA K , DESHPANDE S , et al. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis[J]. Biochim Biophys Acta, 2016, 1863 (8): 1996- 2005.
doi: 10.1016/j.bbamcr.2016.04.022 |
19 |
ZHU M , CORNWALL-SCOONES J , WANG P Z , et al. Developmental clock and mechanism of de novo polarization of the mouse embryo[J]. Science, 2020, 370 (6522): eabd2703.
doi: 10.1126/science.abd2703 |
20 |
DIKIC I , SZYMKIEWICZ I , SOUBEYRAN P . Cbl signaling networks in the regulation of cell function[J]. Cell Mol Life Sci, 2003, 60 (9): 1805- 1827.
doi: 10.1007/s00018-003-3029-4 |
21 |
DUAN L , REDDI A L , GHOSH A , et al. The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling[J]. Immunity, 2004, 21 (1): 7- 17.
doi: 10.1016/j.immuni.2004.06.012 |
22 | THIEN C B , LANGDON W Y . Cbl: many adaptations to regulate protein tyrosine kinases[J]. Nat Rev Mol Cell Biol, 2001, 2 (4): 294- 307. |
23 |
RYAN P E , DAVIES G C , NAU M M , et al. Regulating the regulator: negative regulation of Cbl ubiquitin ligases[J]. Trends Biochem Sci, 2006, 31 (2): 79- 88.
doi: 10.1016/j.tibs.2005.12.004 |
24 |
YANG X B , HAO D J , HE B R . The regulation of E3 ubiquitin ligases Cbl and its cross-talking in bone homeostasis[J]. Curr Stem Cell Res Ther, 2021, 16 (6): 683- 687.
doi: 10.2174/1574888X15666200712191623 |
25 |
SKINNER M K , SCHMIDT M , SAVENKOVA M I , et al. Regulation of granulosa and theca cell transcriptomes during ovarian antral follicle development[J]. Mol Reprod Dev, 2008, 75 (9): 1457- 1472.
doi: 10.1002/mrd.20883 |
26 |
DENHARDT D T , GUO X J . Osteopontin: a protein with diverse functions[J]. FASEB J, 1993, 7 (15): 1475- 1482.
doi: 10.1096/fasebj.7.15.8262332 |
27 | KUWABARA Y , KATAYAMA A , TOMIYAMA R , et al. Gonadotropin regulation and role of ovarian osteopontin in the periovulatory period[J]. J Endocrinol, 2015, 224 (1): 49- 59. |
28 |
POOLE D H , NDIAYE K , PATE J L . Expression and regulation of secreted phosphoprotein 1 in the bovine corpus luteum and effects on T lymphocyte chemotaxis[J]. Reproduction, 2013, 146 (6): 527- 537.
doi: 10.1530/REP-13-0190 |
29 |
CRAIG A M , DENHARDT D T . The murine gene encoding secreted phosphoprotein 1 (osteopontin): promoter structure, activity, and induction in vivo by estrogen and progesterone[J]. Gene, 1991, 100, 163- 171.
doi: 10.1016/0378-1119(91)90362-F |
30 | ESKANDARI-NASAB E , KHARAZI-NEJAD E , NAKHAEE A , et al. 50-bp Ins/Del polymorphism of SOD1 is associated with increased risk of cardiovascular disease[J]. Acta Med Iran, 2014, 52 (8): 591- 595. |
31 |
QU J W , HU H R , NIU H Y , et al. Melatonin restores the declining maturation quality and early embryonic development of oocytes in aged mice[J]. Theriogenology, 2023, 210, 110- 118.
doi: 10.1016/j.theriogenology.2023.07.021 |
32 |
TRIPATHI S K , NANDI S , GUPTA P S P , et al. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions[J]. Theriogenology, 2023, 201, 41- 52.
doi: 10.1016/j.theriogenology.2022.11.048 |
33 |
ZHAO X M , WANG N , HAO H S , et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J]. J Pineal Res, 2018, 64 (1): e12445.
doi: 10.1111/jpi.12445 |
34 |
ABBASI B , DONG Y , RUI R . Resveratrol hinders postovulatory aging by modulating oxidative stress in porcine oocytes[J]. Molecules, 2021, 26 (21): 6346.
doi: 10.3390/molecules26216346 |
35 |
XIONG X R , LAN D L , LI J , et al. Effects of zinc supplementation during in vitro maturation on meiotic maturation of oocytes and developmental capacity in yak[J]. Biol Trace Elem Res, 2018, 185 (1): 89- 97.
doi: 10.1007/s12011-017-1217-6 |
36 |
KHAN A , KHAN M Z , DOU J H , et al. SOD1 gene silencing promotes apoptosis and suppresses proliferation of heat-stressed bovine granulosa cells via induction of oxidative stress[J]. Vet Sci, 2021, 8 (12): 326.
doi: 10.3390/vetsci8120326 |
37 |
FAN H Y , HE J H , BAI Y C , et al. Baicalin improves the functions of granulosa cells and the ovary in aged mice through the mTOR signaling pathway[J]. J Ovarian Res, 2022, 15 (1): 34.
doi: 10.1186/s13048-022-00965-7 |
38 |
CHEN F L , WEN X , LIN P F , et al. Activation of CREBZF increases cell apoptosis in mouse ovarian granulosa cells by regulating the ERK1/2 and mTOR signaling pathways[J]. Int J Mol Sci, 2018, 19 (11): 3517.
doi: 10.3390/ijms19113517 |
39 |
SUN X H , SU Y P , HE Y L , et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14 (5): 721- 731.
doi: 10.1080/15384101.2014.995496 |
40 |
KANEHISA M , GOTO S , SATO Y , et al. KEGG for integration and interpretation of large-scale molecular data sets[J]. Nucleic Acids Res, 2012, 40 (D1): D109- D114.
doi: 10.1093/nar/gkr988 |
41 |
ZIELAK-STECIWKO A E , BROWNE J A , MCGETTIGAN P A , et al. Expression of microRNAs and their target genes and pathways associated with ovarian follicle development in cattle[J]. Physiol Genomics, 2014, 46 (19): 735- 745.
doi: 10.1152/physiolgenomics.00036.2014 |
42 |
HUO S D , CHEN Z , LI S Y , et al. A comparative transcriptome and proteomics study of post-partum ovarian cycle arrest in yaks (Bos grunniens)[J]. Reprod Domest Anim, 2022, 57 (3): 292- 303.
doi: 10.1111/rda.14059 |
43 | TANIGUCHI C M , EMANUELLI B , KAHN C R . Critical nodes in signalling pathways: insights into insulin action[J]. Nat Rev Mol Cell Biol, 2006, 7 (2): 85- 96. |
44 |
SEKULOVSKI N , WHORTON A E , SHI M X , et al. Periovulatory insulin signaling is essential for ovulation, granulosa cell differentiation, and female fertility[J]. FASEB J, 2020, 34 (2): 2376- 2391.
doi: 10.1096/fj.201901791R |
45 |
LI C L , SONG C L , QI K L , et al. Identification of estrus in sows based on salivary proteomics[J]. Animals, 2022, 12 (13): 1656.
doi: 10.3390/ani12131656 |
[1] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[2] | CHEN Ling, CHEN Hao, YUE Chanjuan, MA Rui, FAN Xueyang, LIU Songrui, YANG Guangyou. Evaluation of the Immune Protection Effect of Prokaryotic Expressed Salivary Protein and Ferritin1 in Haemaphysalis flava [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 688-697. |
[3] | YAO Ying, ZHOU Yingcong, DU Peiyan, LI Yijuan, QIAN Wenjie, LI Liuyang, YU Zhipeng, CUI Yan, YU Sijiu, FAN Jiangfeng. Proteomic Analysis of Yak Serum During Pregnancy Based on TMT Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 192-206. |
[4] | YU Zhou, YANG Baigao, ZHANG Hang, XU Xi, ZHANG Peipei, FENG Xiaoyi, CAO Jianhua, NIU Yifan, DU Weihua, HAO Haisheng, ZHU Huabin, ABULIZI·Wusiman, ZHAO Xueming. Research Progress of Estrus Markers in Dairy Buffalo [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3623-3630. |
[5] | HE Wenfeng, LI Chen, CHANG Hongtao, LI Longxi, CHEN Jing, YANG Guoqing, LIU Huimin. Screening and Identifying of Host Proteins that Inhibit Pseudorabies Virus Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1177-1186. |
[6] | YAN Shuo, ZHAO Shanshan, ZHU Zhendong, PAN Qingjie, DONG Huansheng. Study on Nuclear-plasma Transporter KPNA4 of Sheep Sperm Cell [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2194-2201. |
[7] | QI Mengfan, XIE Su, GAO Ruonan, SUN Yishan, SUN Xiaomei, HE Junfei, LU Huiwen, LU Shihao, CHEN Xin, LI Qingchun, HUANG Tao. Identification of Differentially Expressed Proteins in Blood of Sows at Early Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1109-1121. |
[8] | FU Ming, HE Junjun, ZHU Xingquan, CONG Wei. Proteomic Analysis of Changes in the Mouse Brain Tissue Infected with Toxoplasma gondii Oocysts during the Acute and Chronic Stage [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 556-566. |
[9] | ZHANG Anrong, WU Zhengke, CHEN Zhimin, CHANG Wenhuan, CAI Huiyi, LIU Guohua, ZHENG Aijuan. Unraveling Molecular Mechanism of Acute Immunological Stress Affecting Meat Quality of Broiler Chickens by Proteomics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2138-2150. |
[10] | ZHOU Zhengyi, TIAN Li, TIAN Hongzhi, LI Ruyi, DUAN Chenying, OBIANWUNA Uchechukwu Edna, Lü Lihua, WANG Dong. Analysis of Identification Technology and Influence Factors on Silent Estrus of Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 862-871. |
[11] | WANG Xinyue, ZHAO Zhida, SHI Tianpei, SHANG Mingyu, ZHANG Li. The Data Analysis of Embryonic Skeletal Muscle Proteomic in Sheep Based on Parallel Reaction Monitoring Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1587-1596. |
[12] | PENG Mengling, HU Wenye, LI Naixin, WANG Juhua, DING Jianping, ZHOU Jie. The Changes of Hepatic Proteins during Chicken Embryonic Development Based on Proteomics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2): 252-259. |
[13] | ZHAO Chang, ZHANG Jiang, BAI Yunlong, SUN Shuhan, SONG Yuxi, XIA Cheng. Analysis of Serum Differential Proteins in Cows with Inactive Ovaries Based on iTRAQ Technology [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(5): 972-982. |
[14] | ZHOU Yucheng, GUO Mengnan, CHENG Shipeng, ZHANG Haiwei, ZHOU Manli, QIAO Lianjiang, YANG Yanling. Differential Analysis of Ubiquitination Modification of Host Immune-related Proteins after Brucella 16M Infection [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(11): 2290-2301. |
[15] | XU Meng-fei, LU Ping-ping, MA Xun, ZHANG Yan-yan, WANG Wei-ye, MENG Ji-meng, WANG Zheng-rong, BO Xin-wen. Advances in Echinococcus granulosus Proteomics [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(3): 466-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||