Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (7): 2890-2900.doi: 10.11843/j.issn.0366-6964.2024.07.010
• Animal Genetics and Breeding • Previous Articles Next Articles
Ruiqi ZHANG1,2(), Yanqin PANG1(
), Zaishan LI3, Xiuguo SHANG2, Ganqiu LAN1, Jinbiao GUO2,*(
), Yunxiang ZHAO1,3,*(
)
Received:
2023-11-20
Online:
2024-07-23
Published:
2024-07-24
Contact:
Jinbiao GUO, Yunxiang ZHAO
E-mail:582014973@qq.com;Shanxi18404985210@163.com;469190753@qq.com;yunxiangzhao@126.com
CLC Number:
Ruiqi ZHANG, Yanqin PANG, Zaishan LI, Xiuguo SHANG, Ganqiu LAN, Jinbiao GUO, Yunxiang ZHAO. Research on Feeding Capacity Selection of Lactating Sows Based on Intelligent Precision Feeding[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2890-2900.
Table 1
Statistical analysis of feeding traits and estimation of genetic parameters"
性状Trait | 头数Number | 最大值/(g·d-1) Max | 最小值/(g·d-1) Min | 平均值±标准差/(g·d-1) Mean±Standard deviation | 变异系数/% Coefficient of variation | h2 |
哺乳期日均采食量Average daily feed intake during lactation | 902 | 8 407 | 3 508 | 5 695±777 | 13.64 | 0.27 |
哺乳期第一周日均采食量Average daily feed intake during the first week of lactation | 868 | 6 194 | 947 | 4 065±824 | 20.27 | 0.23 |
哺乳期第二周日均采食量Average daily feed intake during the second week of lactation | 878 | 8 844 | 2 963 | 6 031±956 | 15.85 | 0.26 |
哺乳期第三周日均采食量Average daily feed intake during the third week of lactation | 742 | 10 461 | 3 438 | 6 543±1 064 | 16.26 | 0.20 |
Table 2
Correlation analysis between feed intake and reproductive performance"
性状Trait | 哺乳期日均采食量Average daily feed intake during lactation | 哺乳期第一周日均采食量Average daily feed intake during the first week of lactation | 哺乳期第二周日均采食量Average daily feed intake during the second week of lactation | 哺乳期第三周日均采食量Average daily feed intake during the third week of lactation | 断配间隔Dismatching interval | 下一胎次总产仔数Total litter size at next birth |
哺乳期日均采食量Average daily feed intake during lactation | 1 | |||||
哺乳期第一周日均采食量Average daily feed intake during the first week of lactation | 0.75*** | 1 | ||||
哺乳期第二周日均采食量Average daily feed intake during the second week of lactation | 0.94*** | 0.73*** | 1 | |||
哺乳期第三周日均采食量Average daily feed intake during the third week of lactation | 0.85*** | 0.29*** | 0.78*** | 1 | ||
断配间隔Dismatching interval | -0.07 | 0.21 | 0.04 | -0.27** | 1 | |
下一胎次总产仔数Total litter size at next birth | 0.18 | 0.14 | -0.02 | 0.16** | -0.87 | 1 |
Table 3
Screening SNPs significantly correlated with feeding traits"
性状Trait | SNP位点SNP loci | 染色体Chromosome | 位置Position | 最小等位基因频率Minimum allele frequency | P | 最近基因Nearest gene | 最近距离Nearest distance |
第一周日均采食量Average daily feed intake during the first week of lactation | rs321811272 | 6 | 44908270 | 0.147 | 2.83×10-6 | HAMP | 120 965 |
rs341818044 | 6 | 45092427 | 0.161 | 1.90×10-6 | UPK1A | -11 594 | |
rs330188241 | 6 | 45142409 | 0.161 | 1.90×10-6 | UPK1A | 28 287 | |
rs3471691301 | 6 | 45223393 | 0.161 | 1.90×10-6 | U6 | -99 895 | |
rs322027839 | 6 | 45244146 | 0.161 | 1.90×10-6 | U6 | -79 142 | |
rs325439878 | 6 | 45811589 | 0.445 | 1.77×10-5 | COX7A1 | 290 876 | |
rs344506073 | 7 | 63617372 | 0.153 | 2.33×10-5 | |||
rs3473795189 | 7 | 63630576 | 0.155 | 2.84×10-5 | |||
rs321926366 | 9 | 123440360 | 0.363 | 7.89×10-5 | |||
rs81232569 | 17 | 44965892 | 0.188 | 9.31×10-5 | |||
rs342256202 | 17 | 44988096 | 0.200 | 6.02×10-5 | |||
第二周日均采食量Average daily Feed intake during the second week of lactation | rs80782279 | 4 | 8954952 | 0.399 | 8.31×10-5 | ||
rs341143158 | 4 | 9059801 | 0.242 | 4.79×10-5 | |||
rs80835898 | 4 | 9059829 | 0.397 | 7.58×10-5 | |||
rs337240073 | 14 | 5402905 | 0.312 | 9.02×10-5 | |||
rs337081410 | 14 | 5402971 | 0.312 | 9.02×10-5 | |||
rs319708616 | 14 | 5402978 | 0.312 | 9.02×10-5 | |||
rs331157866 | 14 | 5736105 | 0.300 | 4.88×10-5 | |||
rs339438831 | 14 | 5736112 | 0.300 | 4.88×10-5 | |||
rs322722609 | 14 | 5736160 | 0.299 | 5.33×10-5 | |||
第三周日均采食量Averag daily feed intake during the third week of lactation | rs327338831 | 1 | 138852678 | 0.454 | 6.14×10-5 | U6 | 250 527 |
rs322009388 | 1 | 138949706 | 0.454 | 5.94×10-5 | U6 | 347 555 | |
rs333310113 | 1 | 139207648 | 0.454 | 5.92×10-5 | |||
rs338115020 | 1 | 139240890 | 0.454 | 7.03×10-5 | |||
rs329224371 | 1 | 139495954 | 0.454 | 7.76×10-5 | CHSY1 | -234 767 | |
rs322312894 | 6 | 66166982 | 0.379 | 1.02×10-4 | |||
rs320830362 | 14 | 111845810 | 0.155 | 5.98×10-5 | NDUFB8 | 212 246 | |
rs80922182 | 14 | 116346626 | 0.135 | 9.57×10-5 | U1 | -56 152 |
1 |
TUMMARUK P , DE RENSIS F , KIRKWOOD R N . Managing prolific sows in tropical environments[J]. Mol Reprod Dev, 2023, 90 (7): 533- 545.
doi: 10.1002/mrd.23661 |
2 |
YANG Y Y , HU C J , ZHAO X C , et al. Dietary energy sources during late gestation and lactation of sows: effects on performance, glucolipid metabolism, oxidative status of sows, and their offspring[J]. J Anim Sci, 2019, 97 (11): 4608- 4618.
doi: 10.1093/jas/skz297 |
3 |
RODRÍGUEZ M , DÍAZ-AMOR G , MORALES J , et al. Feed intake patterns of modern genetics lactating sows: characterization and effect of the reproductive parameters[J]. Porcine Health Manag, 2023, 9 (1): 6.
doi: 10.1186/s40813-022-00300-y |
4 |
BERGSMA R , KANIS E , VERSTEGEN M W A , et al. Genetic parameters and predicted selection results for maternal traits related to lactation efficiency in sows[J]. J Anim Sci, 2008, 86 (5): 1067- 1080.
doi: 10.2527/jas.2007-0165 |
5 |
MANZANILLA-PECH C I V , STEPHANSEN R B , LASSEN J . Genetic parameters for feed intake and body weight in dairy cattle using high-throughput 3-dimensional cameras in Danish commercial farms[J]. J Dairy Sci, 2023, 106 (12): 9006- 9015.
doi: 10.3168/jds.2023-23405 |
6 |
KIM S W , EASTER R A . Nutrient mobilization from body tissues as influenced by litter size in lactating sows[J]. J Anim Sci, 2001, 79 (8): 2179- 2186.
doi: 10.2527/2001.7982179x |
7 |
GREINER L , NEILL C , ALLEE G L , et al. The feeding of dried distillers' grains with solubles to lactating sows[J]. J Anim Sci, 2015, 93 (12): 5718- 5724.
doi: 10.2527/jas.2015-9545 |
8 | 米蕾英, 王勇. 浅论日粮中添加苜蓿草粉对母猪繁殖性能的影响[J]. 吉林畜牧兽医, 2021, 42 (10): 29- 30. |
MI L Y , WANG Y . Effects of alfalfa meal supplementation on reproductive performance of sows were discussed[J]. Jilin Animal Husbandry and Veterinary Medicine, 2021, 42 (10): 29- 30. | |
9 | 李颖, 任丽萍, 远永来. 苜蓿草粉对仔猪生长性能、肠道抗氧化指标和肠道形态结构的影响[J]. 中国饲料, 2024, (6): 18- 21. |
LI Y , REN L P , YUAN Y L . The effects of alfalfa meal on growth performance, intestinal antioxidant indicators, and intestinal morphology of piglets[J]. China Feed, 2024, (6): 18- 21. | |
10 |
GILBERT H , BIDANEL J P , BILLON Y , et al. Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig[J]. J Anim Sci, 2012, 90 (4): 1097- 1108.
doi: 10.2527/jas.2011-4515 |
11 |
BERGSMA R , MATHUR P K , KANIS E , et al. Genetic correlations between lactation performance and growing-finishing traits in pigs[J]. J Anim Sci, 2013, 91 (8): 3601- 3611.
doi: 10.2527/jas.2012-6200 |
12 |
LUNDGREN H , FIKSE W F , GRANDINSON K , et al. Genetic parameters for feed intake, litter weight, body condition and rebreeding success in primiparous Norwegian Landrace sows[J]. Animal, 2014, 8 (2): 175- 183.
doi: 10.1017/S1751731113002000 |
13 |
THEKKOOT D M , YOUNG J M , ROTHSCHILD M F , et al. Genomewide association analysis of sow lactation performance traits in lines of Yorkshire pigs divergently selected for residual feed intake during grow-finish phase[J]. J Anim Sci, 2016, 94 (6): 2317- 2331.
doi: 10.2527/jas.2015-0258 |
14 | 赵云翔, 邝伟键, 高宁, 等. 杜洛克公猪背膘厚度、日增重、日采食量和饲料效率相关性状的遗传参数估计[J]. 家畜生态学报, 2019, 40 (11): 18- 21. |
ZHAO Y X , KUANG W J , GAO N , et al. Estimation of genetic parameters of growth and feed efficiency related traits in YX China-line Duroc specialized strain[J]. Acta Ecologae Animalis Domastici, 2019, 40 (11): 18- 21. | |
15 |
WANG S L , JIANG H H , QIAO Y L , et al. The research progress of vision-based artificial intelligence in smart pig farming[J]. Sensors, 2022, 22 (17): 6541.
doi: 10.3390/s22176541 |
16 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
17 |
YIN L L , ZHANG H H , TANG Z S , et al. HIBLUP: an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J]. Nucleic Acids Res, 2023, 51 (8): 3501- 3512.
doi: 10.1093/nar/gkad074 |
18 |
ZHOU X , STEPHENS M . Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44 (7): 821- 824.
doi: 10.1038/ng.2310 |
19 | XIE C , MAO X Z , HUANG J J , et al. KOBAS 2.0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39 (Web Server issue): W316- W322. |
20 |
STRATHE A V , STRATHE A B , THEIL P K , et al. Determination of protein and amino acid requirements of lactating sows using a population-based factorial approach[J]. Animal, 2015, 9 (8): 1319- 1328.
doi: 10.1017/S1751731115000488 |
21 | SOEDE N M, KEMP B. Best practices in the lactating and weaned sow to optimize reproductive physiology and performance[M]//FARMER C. The Gestating and Lactating Sow. Wageningen: Wageningen Academic Publishers, 2015: 377-408. |
22 |
KOKETSU Y , TANI S , ⅡDA R . Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds[J]. Porcine Health Manag, 2017, 3, 1- 10.
doi: 10.1186/s40813-016-0049-7 |
23 |
STRATHE A V , BRUUN T S , HANSEN C F . Sows with high milk production had both a high feed intake and high body mobilization[J]. Animal, 2017, 11 (11): 1913- 1921.
doi: 10.1017/S1751731117000155 |
24 |
COSTERMANS N G J , TEERDS K J , KEMP B , et al. Physiological and metabolic aspects of follicular developmental competence as affected by lactational body condition loss[J]. Mol Reprod Dev, 2023, 90 (7): 491- 502.
doi: 10.1002/mrd.23628 |
25 |
COSTERMANS N G J , SOEDE N M , MIDDELKOOP A , et al. Influence of the metabolic state during lactation on milk production in modern sows[J]. Animal, 2020, 14 (12): 2543- 2553.
doi: 10.1017/S1751731120001536 |
26 |
KOKETSU Y . Influence of cumulative feed intake during early and mid-lactation on luteinizing hormone secretion and weaning-to-estrus interval in primiparous sows[J]. J Vet Med Sci, 1999, 61 (4): 325- 329.
doi: 10.1292/jvms.61.325 |
27 | KUHLA B , METGES C C , HAMMON H M . Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows[J]. Domest Anim Endocrinol, 2016, 56 (Suppl): S2- S10. |
28 |
CHALKIAS H , JONAS E , ANDERSSON L S , et al. Identification of novel candidate genes for the inverted teat defect in sows using a genome-wide marker panel[J]. J Appl Genet, 2017, 58 (2): 249- 259.
doi: 10.1007/s13353-016-0382-1 |
29 |
JIANG L , WANG J M , WANG K , et al. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation[J]. Blood, 2021, 138 (8): 689- 705.
doi: 10.1182/blood.2020008986 |
30 |
WILMAN H R , PARISINOS C A , ATABAKI-PASDAR N , et al. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration[J]. J Hepatol, 2019, 71 (3): 594- 602.
doi: 10.1016/j.jhep.2019.05.032 |
31 |
JULIÁN-SERRANO S , YUAN F C , WHEELER W , et al. Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies[J]. Am J Clin Nutr, 2021, 114 (4): 1408- 1417.
doi: 10.1093/ajcn/nqab217 |
32 |
LIU N , XIAO B , REN H Y , et al. Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights[J]. Anim Genet, 2013, 44 (1): 24- 33.
doi: 10.1111/j.1365-2052.2012.02363.x |
33 |
TALBOT N C , SHANNON A E , GARRETT W M . Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue[J]. In Vitro Cell Dev Biol Anim, 2019, 55 (4): 285- 301.
doi: 10.1007/s11626-019-00336-5 |
34 |
DRÖGEMÜLLER C , KUIPER H , VOß-NEMITZ R , et al. Molecular characterization and chromosome assignment of the porcine gene COX7A1 coding for the muscle specific cytochrome c oxidase subunit VⅡa-M[J]. Cytogenet Cell Genet, 2001, 94 (3-4): 190- 193.
doi: 10.1159/000048814 |
35 |
FENG Y T , XU J Y , SHI M J , et al. COX7A1 enhances the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via regulating mitochondrial metabolism[J]. Cell Death Dis, 2022, 13 (11): 988.
doi: 10.1038/s41419-022-05430-3 |
36 |
GUO M , LIU Z , WILLEN J , et al. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height[J]. eLife, 2017, 6, e29329.
doi: 10.7554/eLife.29329 |
37 | BERLAND C , CASTEL J , TERRASI R , et al. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis[J]. Mol Psychiatry, 2022, 27 (4): 2340- 2354. |
38 | KUHLA B . Review: pro-inflammatory cytokines and hypothalamic inflammation: implications for insufficient feed intake of transition dairy cows[J]. Animal, 2020, 14 Suppl 1, s65- s77. |
39 | GAITÁN A V , WOOD J T , LIU Y P , et al. Maternal dietary fatty acids and their relationship to derived endocannabinoids in human milk[J]. J Hum Lact, 2021, 37 (4): 813- 820. |
40 | XIE J H , SHI S Y , LIU Y C , et al. Fructose metabolism and its role in pig production: a mini-review[J]. Front Nutr, 2022, 9, 922051. |
41 | DIMITRIADIS G D , MARATOU E , KOUNTOURI A , et al. Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: an integrative approach[J]. Nutrients, 2021, 13 (1): 159. |
42 | 杨俊, 赵小刚, 张桂红, 等. 哺乳母猪饲粮中添加鱼油对母猪泌乳性能的影响[J]. 饲料研究, 2024, 47 (5): 26- 31. |
YANG J , ZHAO X G , ZHANG G H , et al. Effect of fish oil supplementation in lactating sow diet on lactation performance[J]. Feed Research, 2024, 47 (5): 26- 31. |
[1] | CUI Shengdi, WANG Kai, ZHAO Zhenjian, CHEN Dong, SHEN Qi, YU Yang, WANG Junge, CHEN Ziyang, YU Shixin, CHEN Jiamiao, WANG Xiangfeng, TANG Guoqing. Identification of Candidate Genes for Pork Texture Traits Using GWAS Combined with Co-localisation of DNA Methylation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1945-1957. |
[2] | LI Keanning, DU Lili, AN Bingxing, DENG Tianyu, LIANG Mang, CAO Sheng, DU Yueying, XU Lingyang, GAO Xue, ZHANG Lupei, LI Junya, GAO Huijiang. Genetic Parameter Estimation and Genome-Wide Association Study for Carcass Traits and Primal Cuts Weight Traits in Huaxi Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3664-3676. |
[3] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, TAN Xiaodong, LIU Jie, ZHAO Guiping, WEN Jie, LIU Ranran. A Method for Quickly Mining the Characteristic SNP Markers Set of Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3252-3261. |
[4] | FAN Chenyu, SHAN Yanju, ZHANG Ming, JI Gaige, JU Xiaojun, TU Yunjie, HE Xi, SHU Jingting, LIU Yifan, ZHANG Haihan. Genome-wide Association Study of Body Weight and Meat Quality Traits in Lihua Mahuang Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4982-4992. |
[5] | LI Ling, LI Yefang, LIANG Benmeng, SUN Yujiang, MA Yuehui, MA Qing, JIANG Lin, LIU Shuqin. Paternity Identification of Tan Sheep Based on SNP Markers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2912-2919. |
[6] | LI Hongwei, XU Lingyang, WANG Zezhao, CAI Wentao, ZHU Bo, CHEN Yan, GAO Xue, ZHANG Lupei, GAO Huijiang, LI Junya. Genome-wide Association Study of Slaughter Traits Based on Haplotype in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4232-4243. |
[7] | YANG Xinting, ZHENG Maiqing, TAN Xiaodong, ZHAO Guiping, HUANG Chao, LI Sen, LI Wei, WEN Jie, LIU Ranran. Genetic Parameters Estimation and Key Genes Identification for Meat Quality Traits of Fast-growing Yellow-feather Meat-type Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2416-2428. |
[8] | FAN Tingting, CHEN Yan, ZHANG Lupei, XU Lingyang, GAO Huijiang, LI Junya, GAO Xue. Prediction of Heterosis between Chinese Simmental Beef Cattle and Chinese Local Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 653-661. |
[9] | OUYANG Fengzheng, WANG Ligang, YUE Jingwei, YAN Hua, ZHANG Longchao, HOU Xinhua, LIU Xin, WANG Lixian. Genome-wide Association Study of Copy Number Variations and Quantitative Trait Loci Mapping to Identify Candidate Genes for Body Height Trait in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1515-1524. |
[10] | LIU Xiaojing, LIU Lu, WANG Jie, CUI Huanxian, ZHAO Guiping, WEN Jie. Genome-wide Association Study of Chicken Blood Glucose Traits Using Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1187-1195. |
[11] | WU Qun-qing, ZHANG Long-chao, HUANG Sheng-qiang, WANG Li-xian. A Genome-wide Association Study of Different Size Populations Based on Tail Analysis [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(7): 1181-1190. |
[12] | XU Pan,ZHANG Zhen,CUI Lei-lei,YANG Bin,DUAN Yan-yu. A Systems Genetics Study of Hematological Traits in a White Duroc × Erhualian Pigs F2 Resource Population [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(2): 232-240. |
[13] | HAO Xing-jie,HU Lin,ZHANG Shu-jun. Progresses in Research of Genome-wide Association Study Methods [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(2): 213-217. |
[14] | YANG Hui,FANG Shao-ming,HUANG Xiao-chang,CHEN Cong-ying,ZHANG Zhi-yan. Genome-Wide Association Study on Maternal Infanticide Behavior in Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(2): 241-248. |
[15] | LAN Rong,ZHU Lan,YAO Xin-rong,WANG Peng,SHAO Qing-yong,HONG Qiong-hua. Genome-wide Association Study of Lambing Number in Goat [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2015, 46(4): 549-554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||