Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (6): 2357-2367.doi: 10.11843/j.issn.0366-6964.2024.06.008
• Review • Previous Articles Next Articles
Zhengyang ZHANG1(), Yinjuan SONG1,*(
), Yuefeng CHU1,2,3,*(
)
Received:
2023-07-03
Online:
2024-06-23
Published:
2024-06-28
Contact:
Yinjuan SONG, Yuefeng CHU
E-mail:13591587583@163.com;songyinjuan@caas.cn;chuyuefeng@caas.cn
CLC Number:
Zhengyang ZHANG, Yinjuan SONG, Yuefeng CHU. Research Progress on the Role of HIF-1α in Pathogen Infections[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2357-2367.
Fig. 1
Regulation mechanism of HIF-1α stability Under normoxic conditions, hydroxylated and acetylated HIF-1α is recognized by VHL and rapidly degraded in the cell. However, under hypoxic conditions or stimulation by pathogenic microorganisms or metabolic intermediates, HIF-1α protein stabilizes and translocates to the nucleus, where it dimerizes with HIF-1β subunit and binds to HRE to regulate the transcription of various downstream genes"
Fig. 2
HIF-1α affects the innate immune function of host cells Stable HIF-1α participates in regulating the transcription of various downstream genes, which can regulate host cell metabolic reprogramming, secretion of inflammatory cytokines, promotion of angiogenesis, and cell apoptosis, among other innate immune functions"
1 |
LEE J W , BAE S H , JEONG J W , et al. Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions[J]. Exp Mol Med, 2004, 36 (1): 1- 12.
doi: 10.1038/emm.2004.1 |
2 |
WEIDEMANN A , JOHNSON R S . Biology of HIF-1α[J]. Cell Death Differ, 2008, 15 (4): 621- 627.
doi: 10.1038/cdd.2008.12 |
3 |
KE Q D , COSTA M . Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol, 2006, 70 (5): 1469- 1480.
doi: 10.1124/mol.106.027029 |
4 |
WERTH N , BEERLAGE C , ROSENBERGER C , et al. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens[J]. PLoS One, 2010, 5 (7): e11576.
doi: 10.1371/journal.pone.0011576 |
5 |
SEMENZA G L . HIF-1 and mechanisms of hypoxia sensing[J]. Curr Opin Cell Biol, 2001, 13 (2): 167- 171.
doi: 10.1016/S0955-0674(00)00194-0 |
6 | SEMENZA G L , WANG G L . A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12 (12): 5447- 5454. |
7 |
PONTING C P , ARAVIND L . PAS: a multifunctional domain family comes to light[J]. Curr Biol, 1997, 7 (11): R674- R677.
doi: 10.1016/S0960-9822(06)00352-6 |
8 |
YU F , WHITE S B , ZHAO Q , et al. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation[J]. Proc Natl Acad Sci U S A, 2001, 98 (17): 9630- 9635.
doi: 10.1073/pnas.181341498 |
9 |
KOIVUNEN P , HIRSILÄ M , REMES A M , et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF[J]. J Biol Chem, 2007, 282 (7): 4524- 4532.
doi: 10.1074/jbc.M610415200 |
10 |
LI F , SONVEAUX P , RABBANI Z N , et al. Regulation of HIF-1α stability through S-nitrosylation[J]. Mol Cell, 2007, 26 (1): 63- 74.
doi: 10.1016/j.molcel.2007.02.024 |
11 |
KORBECKI J , SIMIŃSKA D , GĄSSOWSKA-DOBROWOLSKA M , et al. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms[J]. Int J Mol Sci, 2021, 22 (19): 10701.
doi: 10.3390/ijms221910701 |
12 |
ZAREMBER K A , MALECH H L . HIF-1α: a master regulator of innate host defenses?[J]. J Clin Invest, 2005, 115 (7): 1702- 1704.
doi: 10.1172/JCI25740 |
13 |
HARTMANN H , ELTZSCHIG H K , WURZ H , et al. Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores[J]. Gastroenterology, 2008, 134 (3): 756- 767.e6.
doi: 10.1053/j.gastro.2007.12.008 |
14 |
MAZZON M , PETERS N E , LOENARZ C , et al. A mechanism for induction of a hypoxic response by vaccinia virus[J]. Proc Natl Acad Sci U S A, 2013, 110 (30): 12444- 12449.
doi: 10.1073/pnas.1302140110 |
15 |
FRAKOLAKI E , KAIMOU P , MORAITI M , et al. The role of tissue oxygen tension in dengue virus replication[J]. Cells, 2018, 7 (12): 241.
doi: 10.3390/cells7120241 |
16 |
DESHMANE S L , AMINI S , SEN S , et al. Regulation of the HIV-1 promoter by HIF-1α and Vpr proteins[J]. Virol J, 2011, 8, 477.
doi: 10.1186/1743-422X-8-477 |
17 | DUETTE G , PEREYRA GERBER P , RUBIONE J , et al. Induction of HIF-1α by HIV-1 infection in CD4+ T cells promotes viral replication and drives extracellular vesicle-mediated inflammation[J]. mBio, 2018, 9 (5): e00757- 18. |
18 |
HAN H K , HAN C Y , CHEON E P , et al. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation[J]. Biochem Biophys Res Commun, 2007, 357 (2): 567- 573.
doi: 10.1016/j.bbrc.2007.04.012 |
19 |
FARQUHAR M J , HUMPHREYS I S , RUDGE S A , et al. Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication[J]. J Hepatol, 2017, 66 (5): 919- 929.
doi: 10.1016/j.jhep.2017.01.009 |
20 |
TIAN M F , LIU W Y , LI X , et al. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19[J]. Signal Transduct Target Ther, 2021, 6 (1): 308.
doi: 10.1038/s41392-021-00726-w |
21 |
ZHAO C Q , CHEN J , CHENG L P , et al. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type Ⅱ epithelial cells[J]. Emerg Microbes Infect, 2020, 9 (1): 691- 706.
doi: 10.1080/22221751.2020.1742585 |
22 |
REN L H , ZHANG W J , HAN P , et al. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome[J]. Virology, 2019, 530, 51- 58.
doi: 10.1016/j.virol.2019.02.010 |
23 |
CRAMER T , YAMANISHI Y , CLAUSEN B E , et al. HIF-1α is essential for myeloid cell-mediated inflammation[J]. Cell, 2003, 112 (5): 645- 657.
doi: 10.1016/S0092-8674(03)00154-5 |
24 |
PEYSSONNAUX C , DATTA V , CRAMER T , et al. HIF-1α expression regulates the bactericidal capacity of phagocytes[J]. J Clin Invest, 2005, 115 (7): 1806- 1815.
doi: 10.1172/JCI23865 |
25 |
HUY T X N , NGUYEN T T , REYES A W B , et al. Cobalt (Ⅱ) chloride regulates the invasion and survival of Brucella abortus 544 in RAW 264.7 Cells and B6 Mice[J]. Pathogens, 2022, 11 (5): 596.
doi: 10.3390/pathogens11050596 |
26 |
GOMES M T R , GUIMARÃES E S , MARINHO F V , et al. STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection[J]. PLoS Pathog, 2021, 17 (5): e1009597.
doi: 10.1371/journal.ppat.1009597 |
27 |
BRAVERMAN J , SOGI K M , BENJAMIN D , et al. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis[J]. J Immunol, 2016, 197 (4): 1287- 1297.
doi: 10.4049/jimmunol.1600266 |
28 |
BRAVERMAN J , STANLEY S A . Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB[J]. J Immunol, 2017, 199 (5): 1805- 1816.
doi: 10.4049/jimmunol.1700515 |
29 |
KNIGHT M , BRAVERMAN J , ASFAHA K , et al. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense[J]. PLoS Pathog, 2018, 14 (1): e1006874.
doi: 10.1371/journal.ppat.1006874 |
30 |
MISHRA B B , LOVEWELL R R , OLIVE A J , et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis[J]. Nat Microbiol., 2017, 2, 17072.
doi: 10.1038/nmicrobiol.2017.72 |
31 |
MISHRA B B , RATHINAM V A K , MARTENS G W , et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β[J]. Nat Immunol, 2013, 14 (1): 52- 60.
doi: 10.1038/ni.2474 |
32 |
WYATT E V , DIAZ K , GRIFFIN A J , et al. Metabolic reprogramming of host cells by virulent Francisella tularensis for optimal replication and modulation of inflammation[J]. J Immunol, 2016, 196 (10): 4227- 4236.
doi: 10.4049/jimmunol.1502456 |
33 | LATGÉ J P , CHAMILOS G . Aspergillus fumigatus and aspergillosis in 2019[J]. Clin Microbiol Rev, 2019, 33 (1): e00140- 18. |
34 |
SHEPARDSON K M , JHINGRAN A , CAFFREY A , et al. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection[J]. PLoS Pathog, 2014, 10 (9): e1004378.
doi: 10.1371/journal.ppat.1004378 |
35 |
FECHER R A , HORWATH M C , FRIEDRICH D , et al. Inverse correlation between IL-10 and HIF-1α in macrophages infected with Histoplasma capsulatum[J]. J Immunol, 2016, 197 (2): 565- 579.
doi: 10.4049/jimmunol.1600342 |
36 |
FAN D , COUGHLIN L A , NEUBAUER M M , et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization[J]. Nat Med, 2015, 21 (7): 808- 814.
doi: 10.1038/nm.3871 |
37 | SHI L B , JIANG Q K , BUSHKIN Y , et al. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection[J]. mBio, 2019, 10 (2): e02550- 18. |
38 | GUIMARÃES E S , GOMES M T R , SANCHES R C O , et al. The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection[J]. Front Immunol, 2022, 13, 1063221. |
39 |
GE G , JIANG H Q , XIONG J S , et al. Progress of the art of macrophage polarization and different subtypes in mycobacterial infection[J]. Front Immunol, 2021, 12, 752657.
doi: 10.3389/fimmu.2021.752657 |
40 |
GLEESON L E , SHEEDY F J , PALSSON-MCDERMOTT E M , et al. Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication[J]. J Immunol, 2016, 196 (6): 2444- 2449.
doi: 10.4049/jimmunol.1501612 |
41 |
BOWLIN A , ROYS H , WANJALA H , et al. Hypoxia-inducible factor signaling in macrophages promotes lymphangiogenesis in Leishmania major infection[J]. Infect Immun, 2021, 89 (8): e0012421.
doi: 10.1128/IAI.00124-21 |
42 |
GUO Y , MENG X K , MA J M , et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction[J]. Int J Mol Sci, 2014, 15 (5): 7974- 7986.
doi: 10.3390/ijms15057974 |
43 |
MAZZON M , CASTRO C , ROBERTS L D , et al. A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism[J]. J Gen Virol, 2015, 96 (2): 395- 407.
doi: 10.1099/vir.0.069591-0 |
44 |
BARRERO C A , DATTA P K , SEN S , et al. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis[J]. PLoS One, 2013, 8 (7): e68376.
doi: 10.1371/journal.pone.0068376 |
45 |
REN L H , ZHANG W J , ZHANG J , et al. Influenza a virus (H1N1) infection induces glycolysis to facilitate viral replication[J]. Virol Sin, 2021, 36 (6): 1532- 1542.
doi: 10.1007/s12250-021-00433-4 |
46 | MENENDEZ M T , TEYGONG C , WADE K , et al. siRNA screening identifies the host hexokinase 2 (HK2) gene as an important hypoxia-inducible transcription factor 1 (HIF-1) target gene in Toxoplasma gondii-infected cells[J]. mBio, 2015, 6 (3): e00462. |
47 |
SINGH A K , MUKHOPADHYAY C , BISWAS S , et al. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage[J]. PLoS One, 2012, 7 (6): e38489.
doi: 10.1371/journal.pone.0038489 |
48 |
COLE A M , SHI J S , CECCARELLI A , et al. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds[J]. Blood, 2001, 97 (1): 297- 304.
doi: 10.1182/blood.V97.1.297 |
49 |
KELLY C J , GLOVER L E , CAMPBELL E L , et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1[J]. Mucosal Immunol, 2013, 6 (6): 1110- 1118.
doi: 10.1038/mi.2013.6 |
50 |
LIN A E , BEASLEY F C , OLSON J , et al. Role of hypoxia inducible factor-1α (HIF-1α) in innate defense against uropathogenic Escherichia coli infection[J]. PLoS Pathog, 2015, 11 (4): e1004818.
doi: 10.1371/journal.ppat.1004818 |
51 |
ELKS P M , BRIZEE S , VAN DER VAART M , et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism[J]. PLoS Pathog, 2013, 9 (12): e1003789.
doi: 10.1371/journal.ppat.1003789 |
52 |
LI Q , XIE Y Y , CUI Z B , et al. Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis[J]. Tuberculosis (Edinb), 2021, 126, 102044.
doi: 10.1016/j.tube.2020.102044 |
53 |
PEYSSONNAUX C , CEJUDO-MARTIN P , DOEDENS A , et al. Cutting edge: essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis1[J]. J Immunol, 2007, 178 (12): 7516- 7519.
doi: 10.4049/jimmunol.178.12.7516 |
54 |
GRONEBERG M , HOENOW S , MARGGRAFF C , et al. HIF-1α modulates sex-specific Th17/Treg responses during hepatic amoebiasis[J]. J Hepatol, 2022, 76 (1): 160- 173.
doi: 10.1016/j.jhep.2021.09.020 |
55 |
MIZUSHIMA N , KOMATSU M . Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147 (4): 728- 741.
doi: 10.1016/j.cell.2011.10.026 |
56 |
ZHANG H F , BOSCH-MARCE M , SHIMODA L A , et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2008, 283 (16): 10892- 10903.
doi: 10.1074/jbc.M800102200 |
57 |
DOWDELL A S , CARTWRIGHT I M , GOLDBERG M S , et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis[J]. Mol Biol Cell, 2020, 31 (20): 2249- 2258.
doi: 10.1091/mbc.E20-05-0291 |
58 |
DOWDELL A S , CARTWRIGHT I M , KITZENBERG D A , et al. Essential role for epithelial HIF-mediated xenophagy in control of Salmonella infection and dissemination[J]. Cell Rep, 2022, 40 (13): 111409.
doi: 10.1016/j.celrep.2022.111409 |
59 |
MIMOUNA S , BAZIN M , MOGRABI B , et al. HIF1A regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC)[J]. Autophagy, 2014, 10 (12): 2333- 2345.
doi: 10.4161/15548627.2014.984275 |
60 | FRIEDRICH D , ZAPF D , LOHSE B , et al. The HIF-1α/LC3-Ⅱ axis impacts fungal immunity in human macrophages[J]. Infect Immun, 2019, 87 (7): e00125- 19. |
61 |
NEUBERT P , WEICHSELBAUM A , REITINGER C , et al. HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting[J]. Autophagy, 2019, 15 (11): 1899- 1916.
doi: 10.1080/15548627.2019.1596483 |
62 | SOWTER H M , RATCLIFFE P J , WATSON P , et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors[J]. Cancer Res, 2001, 61 (18): 6669- 6673. |
63 |
AN W G , KANEKAL M , SIMON M C , et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α[J]. Nature, 1998, 392 (6674): 405- 408.
doi: 10.1038/32925 |
64 | PIRET J P , MOTTET D , RAES M , et al. Is HIF-1α a pro- or an anti-apoptotic protein?[J]. Biochem Pharmacol, 2002, 64 (5/6): 889- 892. |
65 |
LIU X H , YU E Z , LI Y Y , et al. HIF-1α has an anti-apoptotic effect in human airway epithelium that is mediated via Mcl-1 gene expression[J]. J Cell Biochem, 2006, 97 (4): 755- 765.
doi: 10.1002/jcb.20683 |
66 |
MÜHLEISEN A , GIAISI M , KÖHLER R , et al. Tax contributes apoptosis resistance to HTLV-1-infected T cells via suppression of Bid and Bim expression[J]. Cell Death Dis, 2014, 5 (12): e1575.
doi: 10.1038/cddis.2014.536 |
67 |
VICTORINO F , BIGLEY T M , PARK E , et al. HIF1α is required for NK cell metabolic adaptation during virus infection[J]. eLife, 2021, 10, e68484.
doi: 10.7554/eLife.68484 |
68 |
RAJALINGAM K , SHARMA M , LOHMANN C , et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells[J]. PLoS One, 2008, 3 (9): e3102.
doi: 10.1371/journal.pone.0003102 |
69 |
HAN J , GOLDSTEIN L A , GASTMAN B R , et al. Disruption of Mcl-1 ·Bim complex in Granzyme B-mediated mitochondrial apoptosis[J]. J Biol Chem, 2005, 280 (16): 16383- 16392.
doi: 10.1074/jbc.M411377200 |
70 |
SHARMA M , MACHUY N , BÖHME L , et al. HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells[J]. Cell Microbiol, 2011, 13 (10): 1573- 1585.
doi: 10.1111/j.1462-5822.2011.01642.x |
71 |
MANALO D J , ROWAN A , LAVOIE T , et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1[J]. Blood, 2005, 105 (2): 659- 669.
doi: 10.1182/blood-2004-07-2958 |
72 |
SAKAI M , TAKAHASHI N , IKEDA H , et al. Design, synthesis, and target identification of new hypoxia-inducible factor 1 (HIF-1) inhibitors containing 1-alkyl-1H-pyrazole-3-carboxamide moiety[J]. Bioorg Med Chem, 2021, 46, 116375.
doi: 10.1016/j.bmc.2021.116375 |
73 |
CHEN J , LAI L , LIU S , et al. Targeting HIF-1α and VEGF by lentivirus-mediated RNA interference reduces liver tumor cells migration and invasion under hypoxic conditions[J]. Neoplasma, 2016, 63 (6): 934- 940.
doi: 10.4149/neo_2016_612 |
74 |
ELTZSCHIG H K , BRATTON D L , COLGAN S P . Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases[J]. Nat Rev Drug Discov, 2014, 13 (11): 852- 869.
doi: 10.1038/nrd4422 |
75 |
AKINSULIE O C , SHAHZAD S , OGUNLEYE S C , et al. Crosstalk between hypoxic cellular micro-environment and the immune system: a potential therapeutic target for infectious diseases[J]. Front Immunol, 2023, 14, 1224102.
doi: 10.3389/fimmu.2023.1224102 |
[1] | Fanyuan SUN, Yiting LIU, Xinyi GUO, Jiancai CHEN, Huabo ZHOU, Yifeng QIN, Kang OUYANG, Zuzhang WEI, Weijian HUANG, Ying CHEN. Pathogens, Diagnosis, and Prevention of Upper Respiratory Diseases in Cats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2345-2356. |
[2] | Xiaoyu JI, Yongwei WANG, Yan QIU, Cai ZHANG. Physiological Functions of Glycyrrhiza Polysaccharides and Its Applications in Livestock and Poultry Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2379-2387. |
[3] | Kun YANG, Jingwen MA, Xinrui ZHOU, Liezhu LUO, Zhe LIU, Ziqiang HU, Xingchen WU, Libin LIANG, Shimin GAO. Pathogenicity of Three Recombinant Strains of Infectious Bursal Disease Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2550-2559. |
[4] | Ning ZHOU, Cheng TANG, Jia XU, Hua YUE, Xi CHEN. Pathogenicity and Genomic Characteristics of Feline Panleukopenia Virus A91S Variant in Cats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2560-2568. |
[5] | Dongliang LI, Guanmin ZHENG, Shuai LI, Hongsen ZHU, Chao WU. Differential Expression of Transcriptome in Jejunal of Piglets Infected with Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2652-2661. |
[6] | Ming LI, Hongwei CUI, Jie GAO, Lele AN, Songli LI, Zhenghua RAO. Identification and Genomic Analysis of Pathogenic Escherichia coli in Small Intestinal Content of White Feather Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2692-2700. |
[7] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[8] | LONG Tanghui, ZHOU Jianghui, ZHAN Yanbo, ZHANG Jian, ZHAO Xianghui, LI Yanjiao, OUYANG Kehui, QIU Qinghua. Research Progress on LuxS/AI-2 Quorum Sensing of Rumen Microbe in Ruminants [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1893-1903. |
[9] | YU Zuhua, GAO Mengru, QI Zhiying, ZHANG Jingyu, HE Lei, CHEN Jian, DING Ke. Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation of Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. |
[10] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[11] | XIONG Ting, HE Xianming, ZHAO Xiya, ZHUANG Tingting, HUANG Meizhen, LIANG Shijin, YU Chuanzhao, LIANG Xuejing, CHEN Ruiai. Whole Genome Analysis of Three Predominant Epidemic Strains of Chicken Infectious Bronchitis Virus and Their Pathogenicity [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2109-2122. |
[12] | ZHENG Rui, LIU Zishi, ZHANG Kangyou, YAN Yong, WEI Ling, ZEREN Wengmu, DINGZE Demi, HUANG Jianjun, WANG Li, WEI Yong. Isolation, Identification and Biological Characterization of Colletotrichum jasminigenum in Stems of Peanuts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2206-2213. |
[13] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[14] | HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Research Progress in Heteroresistance of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1432-1445. |
[15] | LUO Tongwang, WU Ya, WANG Shujie, SONG Houhui, SHAO Chunyan. Research Progress on the Mechanism of Cadmium Induced Liver Damage and Selenium Antagonizing Cadmium Hepatotoxicity [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1456-1466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||