Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (2): 484-493.doi: 10.11843/j.issn.0366-6964.2023.02.007
• REVIEW • Previous Articles Next Articles
FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong*
Received:
2022-05-19
Online:
2023-02-23
Published:
2023-02-21
CLC Number:
FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS)[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493.
[1] | COCHET F, PERI F. The role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling[J]. Int J Mol Sci, 2017, 18(11):2318. |
[2] | SHERMAN D J, XIE R, TAYLOR R J, et al. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge[J]. Science, 2018, 359(6377):798-801. |
[3] | ZEBELI Q, SIVARAMAN S, DUNN S M, et al. Intermittent parenteral administration of endotoxin triggers metabolic and immunological alterations typically associated with displaced abomasum and retained placenta in periparturient dairy cows[J]. J Dairy Sci, 2011, 94(10):4968-4983. |
[4] | ZEBELI Q, DUNN S M, AMETAJ B N. Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates[J]. J Dairy Sci, 2011, 94(5):2374-2382. |
[5] | 汪 志, 董国忠, 吴剑波. 内毒素对猪的危害及其控制[J]. 动物营养学报, 2017, 29(2):397-402.WANG Z, DONG G Z, WU J B. The adverse effects of endotoxin on pigs and its control[J]. Chinese Journal of Animal Nutrition, 2017, 29(2):397-402. (in Chinese) |
[6] | AKHTAR M, GUO S, GUO Y F, et al. Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis[J]. Acta Trop, 2020, 207:105458. |
[7] | DOHMEN M J W, JOOP K, STURK A, et al. Relationship between intra-uterine bacterial contamination, endotoxin levels and the development of endometritis in postpartum cows with dystocia or retained placenta[J]. Theriogenology, 2000, 54(7):1019-1032. |
[8] | GOMEZ D E, RODRIGUEZ-LECOMPTE J C, LOFSTEDT J, et al. Detection of endotoxin in plasma of hospitalized diarrheic calves[J]. J Vet Emerg Crit Care (San Antonio), 2019, 29(2):166-172. |
[9] | KIM H S, WHON T W, SUNG H, et al. Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance[J]. Nat Commun, 2021, 12(1):161. |
[10] | GOZHO G N, KRAUSE D O, PLAIZIER J C. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows[J]. J Dairy Sci, 2007, 90(2):856-866. |
[11] | ELMHADI M E, ALI D K, KHOGALI M K, et al. Subacute ruminal acidosis in dairy herds:microbiological and nutritional causes, consequences, and prevention strategies[J]. Anim Nutr, 2022, 10:148-155. |
[12] | KRAUSE K M, OETZEL G R. Understanding and preventing subacute ruminal acidosis in dairy herds:a review[J]. Anim Feed Sci Technol, 2006, 126(3-4):215-236. |
[13] | 张晓音, 吴 旻, 李雨萌, 等. 脂多糖的效应及其机理研究进展[J]. 动物医学进展, 2015, 36(12):133-136.ZHANG X Y, WU M, LI Y M, et al. Progress on effects and mechanisms of lipopolysaccharides[J]. Progress in Veterinary Medicine, 2015, 36(12):133-136. (in Chinese) |
[14] | LEE Y G, LEE J, BYEON S E, et al. Functional role of Akt in macrophage-mediated innate immunity[J]. Front Biosci (Landmark Ed), 2011, 16(2):517-530. |
[15] | QURESHI N, VOGEL S N, VAN WAY III C, et al. The proteasome:a central regulator of inflammation and macrophage function[J]. Immunol Res, 2005, 31(3):243-260. |
[16] | DAVIES D, MEADE K G, HERATH S, et al. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium[J]. Reprod Biol Endocrinol, 2008, 6:53. |
[17] | 赵 欣, 王 莹, 李春亭, 等. 蒲公英提取物对LPS诱导小鼠乳腺炎的减轻效应及其机制分析[J]. 畜牧兽医学报, 2022, 53(8):2773-2781.ZHAO X, WANG Y, LI C T, et al. Alleviating effect and mechanism of dandelion extract on LPS-induced mastitis in mice[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2773-2781. (in Chinese) |
[18] | GUO Y F, XU N N, SUN W J, et al. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-kB activation and MMPs expression[J]. Oncotarget, 2017, 8(17):28481-28493. |
[19] | FICKE L M. Role of TLR4 accessory proteins CD14 and MD-2 in the combinatorial recognition of pathogens[D]. Toledo:The University of Toledo, 2008. |
[20] | GIOANNINI T L, WEISS J P. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells[J]. Immunol Res, 2007, 39(1-3):249-260. |
[21] | BELHAOUANE I, HOFFMANN E, CHAMAILLARD M, et al. Paradoxical roles of the MAL/tirap adaptor in pathologies[J]. Front Immunol, 2020, 11:569127. |
[22] | ANTHONEY N, FOLDI I, HIDALGO A. Toll and toll-like receptor signalling in development[J]. Development, 2018, 145(9):v156018. |
[23] | TSUKAMOTO H, TAKEUCHI S, KUBOTA K, et al. Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1-IKK∈-IRF3 axis activation[J]. J Biol Chem, 2018, 293(26):10186-10201. |
[24] | CRONIN J G, TURNER M L, GOETZE L, et al. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium[J]. Biol Reprod, 2012, 86(2):51. |
[25] | HAYDEN M S, GHOSH S. Signaling to NF-κB[J]. Genes Dev, 2004, 18(18):2195-2224. |
[26] | LOYI T, KUMAR H, NANDI S, et al. Differential expression of pro-inflammatory cytokines in endometrial tissue of buffaloes with clinical and sub-clinical endometritis[J]. Res Vet Sci, 2013, 94(2):336-340. |
[27] | CUI L Y, WANG H, LIN J Q, et al. Progesterone inhibits inflammatory response in E. coli-or LPS-Stimulated bovine endometrial epithelial cells by NF-κB and MAPK pathways[J]. Dev Comp Immunol, 2020, 105:103568. |
[28] | ARTHUR J S C, LEY S C. Mitogen-activated protein kinases in innate immunity[J]. Nat Rev Immunol, 2013, 13(9):679-692. |
[29] | TAKEUCHI O. IRF3:a molecular switch in pathogen responses[J]. Nat Immunol, 2012, 13(7):634-635. |
[30] | TIAN M Y, LI K, LIU R N, et al. Angelica polysaccharide attenuates LPS-induced inflammation response of primary dairy cow claw dermal cells via NF-κB and MAPK signaling pathways[J]. BMC Vet Res, 2021, 17(1):248. |
[31] | 李 林, 曹 萌, 宫彬彬, 等. 丁酸钠通过AMPK通路调控LPS造成牛乳腺上皮细胞脂代谢紊乱的作用机制[J]. 畜牧兽医学报, 2022, 53(9):3221-3230.LI L, CAO M, GONG B B, et al. The mechanism of sodium butyrate through AMPK pathway to regulate lipid metabolism disorder caused by LPS in bovine mammary epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9):3221-3230.(in Chinese) |
[32] | CANI P D, AMAR J, IGLESIAS M A, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7):1761-1772. |
[33] | GROSS J J, SCHWINN A C, BRUCKMAIER R M. Free and bound cortisol, corticosterone, and metabolic adaptations during the early inflammatory response to an intramammary lipopolysaccharide challenge in dairy cows[J]. Domest Anim Endocrinol, 2020, 74:106554. |
[34] | HAYIRLI A. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle[J]. Vet Res Commun, 2006, 30(7):749-774. |
[35] | AMETAJ B N. A new understanding of the causes of fatty liver in dairy cows[J]. Adv Dairy Technol, 2005, 17:97-112. |
[36] | WEBER C, SCHÄFF C T, KAUTZSCH U, et al. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving[J]. J Dairy Sci, 2016, 99(8):6665-6679. |
[37] | SUMARA G, FORMENTINI I, COLLINS S, et al. Regulation of PKD by the MAPK p38δ in insulin secretion and glucose homeostasis[J]. Cell, 2009, 136(2):235-248. |
[38] | FUJISHIRO M, GOTOH Y, KATAGIRI H, et al. MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression[J]. J Biol Chem, 2001, 276(23):19800-19806. |
[39] | OZAKI K I, AWAZU M, TAMIYA M, et al. Targeting the ERK signaling pathway as a potential treatment for insulin resistance and type 2 diabetes[J]. Am J Physiol Endocrinol Metab, 2016, 310(8):E643-E651. |
[40] | ANDERSEN P H. Bovine endotoxicosis——some aspects of relevance to production diseases. A review[J]. Acta Vet Scand Suppl, 2003, 98:141-155. |
[41] | AMETAJ B N, BRADFORD B J, BOBE G, et al. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows[J]. Can J Anim Sci, 2005, 85(2):165-175. |
[42] | KHOVIDHUNKIT W, KIM M S, MEMON R A, et al. Thematic review series:the pathogenesis of atherosclerosis. Effects of infection and inflammation on lipid and lipoprotein metabolism mechanisms and consequences to the host[J]. J Lipid Res, 2004, 45(7):1169-1196. |
[43] | MERKEL M, ECKEL R H, GOLDBERG I J. Lipoprotein lipase:genetics, lipid uptake, and regulation[J]. J Lipid Res, 2002, 43(12):1997-2006. |
[44] | WALDRON M R, KULICK A E, BELL A W, et al. Acute experimental mastitis is not causal toward the development of energy-related metabolic disorders in early postpartum dairy cows[J]. J Dairy Sci, 2006, 89(2):596-610. |
[45] | ZEBELI Q, AMETAJ B N. Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows[J]. J Dairy Sci, 2009, 92(8):3800-3809. |
[46] | VELS L, RØNTVED C M, BJERRING M, et al. Cytokine and acute phase protein gene expression in repeated liver biopsies of dairy cows with a lipopolysaccharide-induced mastitis[J]. J Dairy Sci, 2009, 92(3):922-934. |
[47] | HISS S, MIELENZ M, BRUCKMAIER R M, et al. Haptoglobin concentrations in blood and milk after endotoxin challenge and quantification of mammary Hp mRNA expression[J]. J Dairy Sci, 2004, 87(11):3778-3784. |
[48] | KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation[J]. J Dairy Sci, 2009, 92(4):1712-1724. |
[49] | SHANGRAW E M, RODRIGUES R O, WITZKE M C, et al. Intramammary lipopolysaccharide infusion induces local and systemic effects on milk components in lactating bovine mammary glands[J]. J Dairy Sci, 2020, 103(8):7487-7497. |
[50] | XU T L, WU X Y, LU X B, et al. Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells[J]. BMC Vet Res, 2021, 17(1):97. |
[51] | AMETAJ B N, EMMANUEL D G V, ZEBELI Q, et al. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows[J]. J Dairy Sci, 2009, 92(3):1084-1091. |
[52] | DEPREESTER E, DE KOSTER J, VAN POUCKE M, et al. Influence of adipocyte size and adipose depot on the number of adipose tissue macrophages and the expression of adipokines in dairy cows at the end of pregnancy[J]. J Dairy Sci, 2018, 101(7):6542-6555. |
[53] | 朱颍琨, 肖劲邦, 钱柏霖, 等. 泌乳初期奶牛相关脂肪因子及生理生化指标与脂肪肝的相关性[J]. 浙江农业学报, 2019, 31(5):722-729.ZHU Y K, XIAO J B, QIAN B L, et al. Correlations between adipokine, biochemical indicators in early lactation cows with fatty liver[J]. Acta Agriculturae Zhejiangensis, 2019, 31(5):722-729. (in Chinese) |
[54] | 沈留红, 肖劲邦, 朱颍琨, 等. 围产期奶牛相关脂肪因子及生理生化指标对脂肪肝的风险评估研究[J]. 东北农业大学学报, 2019, 50(2):37-45.SHEN L H, XIAO J B, ZHU Y K, et al. Fatty liver risk assessment function of adipokine, biochemical, and physiological indicators in perinatal dairy cows[J]. Journal of Northeast Agricultural University, 2019, 50(2):37-45. (in Chinese) |
[55] | 肖劲邦, 朱颍琨, 钱柏霖, 等. 围产前期奶牛血清相关能量平衡指标和脂肪因子对酮病的预警作用及意义[J]. 中国农业大学学报, 2019, 24(9):79-87.XIAO J B, ZHU Y K, QIAN B L, et al. Early warning function and significance of serum energy balance index and adipokine levels for ketosis in dairy cows during early prenatal[J]. Journal of China Agricultural University, 2019, 24(9):79-87. (in Chinese) |
[56] | SHEN L, QIAN B, XIAO J, et al. Characterization of serum adiponectin and leptin in healthy perinatal dairy cows or cows with ketosis, and their effects on ketosis involved indices[J]. Pol J Vet Sci, 2020, 23(3):373-381. |
[57] | AGUIRRE V, UCHIDA T, YENUSH L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of ser307[J]. J Biol Chem, 2000, 275(12):9047-9054. |
[58] | ASTAPOVA O, LEFF T. Adiponectin and PPARγ:cooperative and interdependent actions of two key regulators of metabolism[J]. Vitam Horm, 2012, 90:143-162. |
[59] | YE J P. Regulation of PPARγ function by TNF-α[J]. Biochem Biophys Res Commun, 2008, 374(3):405-408. |
[60] | RUI L Y, YUAN M S, FRANTZ D, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2[J]. J Biol Chem, 2002, 277(44):42394-42398. |
[61] | 宁 茂, 曹 杰. 奶牛围产期脂肪因子变化对胰岛素信号通路的影响[J]. 黑龙江畜牧兽医, 2022(2):32-37.NING M, CAO J. Effects of adipokine changes on insulin signaling pathway in perinatal period of dairy cows[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(2):32-37. (in Chinese) |
[62] | SHEN L H, ZHU Y K, XIAO J B, et al. Serum adipokines play different roles in type I and II ketosis[J]. Asian-Australas J Anim Sci, 2020, 33(12):1930-1939. |
[63] | VAN ANDEL M, HEIJBOER A C, DRENT M L. Adiponectin and its isoforms in pathophysiology[J]. Adv Clin Chem, 2018, 85:115-147. |
[64] | KRUMM C S, GIESY S L, CAIXETA L S, et al. Effect of hormonal and energy-related factors on plasma adiponectin in transition dairy cows[J]. J Dairy Sci, 2017, 100(11):9418-9427. |
[65] | SUTTON J D, DHANOA M S, MORANT S V, et al. Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets[J]. J Dairy Sci, 2003, 86(11):3620-3633. |
[66] | AJUWON K M, SPURLOCK M E. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes[J]. Am J Physiol Regul, Integr Comp Physiol, 2005, 288(5):R1220-R1225. |
[67] | KIM Y B, UOTANI S, PIERROZ D D, et al. In vivo administration of leptin activates signal transduction directly in insulin-sensitive tissues:overlapping but distinct pathways from insulin[J]. Endocrinology, 2000, 141(7):2328-2339. |
[68] | LULU S A, KOKTA T A, DODSON M V, et al. Early signaling interactions between the insulin and leptin pathways in bovine myogenic cells[J]. Biochim Biophys Acta (BBA)-Mol Cell Res, 2005, 1744(2):164-175. |
[69] | PESSIN J E, SALTIEL A R. Signaling pathways in insulin action:molecular targets of insulin resistance[J]. J Clin Invest, 2000, 106(2):165-169. |
[70] | 刘小平, 史卓言, 孙 卓, 等. 抵抗素与动物肌内脂肪沉积研究进展[J]. 现代畜牧兽医, 2021(10):92-96.LIU X P, SHI Z Y, SUN Z, et al. Research progress of resistin and intramuscular fat deposition in animals[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021(10):92-96. (in Chinese) |
[71] | GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nat Rev Endocrinol, 2015, 11(9):535-546. |
[72] | PIYA M K, MCTERNAN P G, KUMAR S. Adipokine inflammation and insulin resistance:the role of glucose, lipids and endotoxin[J]. J Endocrinol, 2013, 216(1):T1-T15. |
[73] | FUKUHARA A, MATSUDA M, NISHIZAWA M, et al. Visfatin:a protein secreted by visceral fat that mimics the effects of insulin[J]. Obstet Gynecol Surv, 2005, 60(8):523-524. |
[1] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[2] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[3] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
[4] | HUANG Shangzhen, MA Longgang, LOU Wenqi, NING Jingyang, ZHANG Hailiang, HU Lirong, ZHA Qiong, LI Bin, XU Qing, BASANG Luobu, WANG Yachun. Analysis of Influencing Factors on Blood Indicators of Dairy Cows at High-altitude Area [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1964-1978. |
[5] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
[6] | PAN Chanyuan, ZHAO Zixuan, DUAN Mingjie, JIANG Linshu, TONG Jinjin. The Mechanism of Artemisia carvifolia Alleviating Dairy Cow Oxidative Stress Predicted by Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1071-1084. |
[7] | SONG Shuzhen, LIU Junbin, ZHU Caiye, XU Hongwei, LIU Lishan, KONG Yanlong. The Effect of Tail Docking on Growth Performance, Fat Deposition Distribution and Slaughter Performance in Lanzhou Fat-tailed Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 642-655. |
[8] | SHI Rui, SU Guosheng, CHEN Ziwei, LI Xiang, LUO Hanpeng, LIU Lin, GUO Gang, ZHANG Yi, WANG Yachun, ZHANG Shengli, ZHANG Qin. Comparisons of Genomic Predictions for Fertility Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2944-2954. |
[9] | DOU Mengying, ZHANG Cai, LI Yuanxiao, SHAO Qi, ZHU Jiali, LI Wang, CAO Zhijun. Effects of L-Arginine on Proliferation and Apoptosis of Primary Intestinal Epithelial Cells of Dairy Cows Treated with Heat Stress in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 493-504. |
[10] | ZHANG Ruixue, LIU Xin, XU Xiaofeng, ZHANG Bo, TANG Yulin, REN Man, GUO Yansheng. Study on the Changes of Rumen Metabolites and Metabolic Pathways in Dairy Cows before and after Parturition [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3137-3148. |
[11] | LIN Miao, SUI Yannan, AN Yujie, ZONG Yujie, FENG Limei, WANG Kuopeng, HU Zixuan, ZHAO Guoqi. Effect of Dietary Cobalt Levels on Lactation Performance, Nutrient Digestibility and Plasma Biochemical Parameters in Lactating Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1895-1902. |
[12] | GUO Yan-sheng, TAO Jin-zhong. Selection of Milk Biomarkers of Pregnancy Recognition in Dairy Cows Based on LC-Q/TOF-MS Metabolomics [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(8): 1633-1641. |
[13] | LIU Xiao-qian,LIU Ying, RONG Chao,WANG Kun,XIAO Hang,ZHANG Yuan-shu. Expression Localization of Angiotensin Converting Enzyme 2 (ACE 2) in Dairy Cow Mammary Gland and Its Anti-inflammation Effect [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(3): 552-560. |
[14] | ZHANG Fu-quan,AO Chang-jin,KHAS-Erdene,LIU Shuai-wang,BAI Chen,WANG Xian-jue,GAO Peng,ZHANG Ying. Effects of Intra-arterial Infusion of Amino Acids on Milk Fatty Acids Composition in Lactating Dairy Cows [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(3): 529-535. |
[15] | XU Chu-chu,XIA Cheng,SUN Yu-hang,XIAO Xin-huan,WANG Gang,SHU Shi,ZHANG Hong-you,XU Chuang,YANG Wei. 1H-NMR-based Plasma Metabolic Profiling of Postpartum Dairy Cows with Ovarian Inactivity [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(1): 190-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||