Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (3): 663-679.doi: 10.11843/j.issn.0366-6964.2022.03.001
• REVIEW • Previous Articles Next Articles
OUYANG Qingyuan, HU Shenqiang, WANG Jiwen*
Received:
2021-05-06
Online:
2022-03-23
Published:
2022-03-31
CLC Number:
OUYANG Qingyuan, HU Shenqiang, WANG Jiwen. Current Genomics Research and Application of Important Traits in Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 663-679.
[1] | DEL GIACCO L,CATTANEO C.Introduction to genomics[J].Methods Mol Biol,2012,823:79-88. |
[2] | LIU T F,LUO C L,MA J,et al.High-throughput sequencing with the preselection of markers is a good alternative to SNP chips for genomic prediction in broilers[J].Front Genet,2020,11:108. |
[3] | HAYES B.Overview of statistical methods for genome-wide association studies (GWAS)[J].Methods Mol Biol,2013,1019:149-169. |
[4] | STEPHAN W.Selective sweeps[J].Genetics,2019,211(1):5-13. |
[5] | International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution[J].Nature,2004,432(7018):695-716. |
[6] | LOVELL P V,WIRTHLIN M,WILHELM L,et al.Conserved syntenic clusters of protein coding genes are missing in birds[J].Genome Biol,2014,15(12):565. |
[7] | HUANG Y H,LI Y R,BURT D W,et al.The duck genome and transcriptome provide insight into an avian influenza virus reservoir species[J].Nat Genet,2013,45(7):776-783. |
[8] | SMEDS L,KAWAKAMI T,BURRI R,et al.Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes[J].Nat Commun,2014,5:5448. |
[9] | ZHOU Q,ZHANG J L,BACHTROG D,et al.Complex evolutionary trajectories of sex chromosomes across bird taxa[J].Science,2014,346(6215):1246338. |
[10] | LI J,ZHANG J L,LIU J,et al.A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals[J].Gigascience,2021,10(1):giaa142. |
[11] | WANG M S,LI Y,PENG M S,et al.Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens[J].Mol Biol Evol,2015,32(7):1880-1889. |
[12] | SOHN J I,NAM K,HONG H,et al.Whole genome and transcriptome maps of the entirely black native Korean chicken breed Yeonsan Ogye[J].Gigascience,2018,7(7):giy086. |
[13] | ZHOU Z K,LI M,CHENG H,et al.An intercross population study reveals genes associated with body size and plumage color in ducks[J].Nat Commun,2018,9(1):2648. |
[14] | LU L Z,CHEN Y,WANG Z,et al.The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver[J].Genome Biol,2015,16(1):89. |
[15] | GAO G L,ZHAO X Z,LI Q,et al.Genome and metagenome analyses reveal adaptive evolution of the host and interaction with the gut microbiota in the goose[J].Sci Rep,2016,6:32961. |
[16] | LI Y,GAO G L,LIN Y,et al.Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome[J].Gigascience,2020,9(10):giaa114. |
[17] | SHAPIRO M D,KRONENBERG Z,LI C,et al.Genomic diversity and evolution of the head crest in the rock pigeon[J]. Science,2013,339(6123):1063-1067. |
[18] | DAMAS J,O'CONNOR R,FARRÉ M,et al.Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set[J].Genome Res,2017,27(5):875-884. |
[19] | DALLOUL R A,LONG J A,ZIMIN A V,et al.Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo):genome assembly and analysis[J].PLoS Biol,2010,8(9):e1000475. |
[20] | KAWAHARA-MIKI R,SANO S,NUNOME M,et al.Next-generation sequencing reveals genomic features in the Japanese quail[J].Genomics,2013,101(6):345-353. |
[21] | PARK M N,CHOI J A,LEE K T,et al.Genome-wide association study of chicken plumage pigmentation[J]. Asian-Australas J Anim Sci,2013,26(11):1523-1528. |
[22] | YANG L,DU X,WEI S,et al.Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage[J].Anim Genet,2017,48(5):611-614. |
[23] | WANG L,GUO J Z,XI Y,et al.Understanding the genetic domestication history of the Jianchang duck by genotyping and sequencing of genomic genes under selection[J].G3(Bethesda),2020,10(5):1469-1476. |
[24] | XI Y,WANG L,LIU H H,et al.A 14-bp insertion in endothelin receptor B-like (EDNRB2) is associated with white plumage in Chinese geese[J].BMC Genomics,2020,21(1):162. |
[25] | WU Y,ZHANG Y L,HOU Z C,et al.Population genomic data reveal genes related to important traits of quail[J]. Gigascience, 2018,7(5):giy049. |
[26] | VICKREY A I,BRUDERS R,KRONENBERG Z,et al.Introgression of regulatory alleles and a missense coding mutation drive plumage pattern diversity in the rock pigeon[J].Elife,2018,7:e34803. |
[27] | HUANG X H,OTECKO N O,PENG M S,et al.Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds[J].BMC Genomics,2020,21(1):316. |
[28] | HUANG T,PU Y J,SONG C,et al.A quantitative trait locus on chromosome 2 was identified that accounts for a substantial proportion of phenotypic variance of the yellow plumage color in chicken[J].Poult Sci,2020,99(6):2902-2910. |
[29] | WENG Z X,XU Y J,LI W N,et al.Genomic variations and signatures of selection in Wuhua yellow chicken[J].PLoS One,2020,15(10):e0241137. |
[30] | ERIKSSON J,LARSON G,GUNNARSSON U,et al.Identification of the Yellow Skin gene reveals a hybrid origin of the domestic chicken[J].PLoS Genet,2008,4(2):e1000010. |
[31] | LI D H,SUN G R,ZHANG M,et al.Breeding history and candidate genes responsible for black skin of Xichuan black-bone chicken[J].BMC Genomics,2020,21(1):511. |
[32] | DORSHORST B,MOLIN A M,RUBIN C J,et al.A complex genomic rearrangement involving the Endothelin 3 locus causes dermal hyperpigmentation in the chicken[J].PLoS Genet,2011,7(12):e1002412. |
[33] | LI G Q,LI D F,YANG N,et al.A genome-wide association study identifies novel single nucleotide polymorphisms associated with dermal shank pigmentation in chickens[J].Poult Sci,2014,93(12):2983-2987. |
[34] | 白云.鸡乌皮和青胫表型遗传基础分析及部分环境因素对其外显率的影响[D].杨凌:西北农林科技大学,2019.BAI Y.Analysis of genetic basis underlying dermal hypermelanization and green shank phenotypes of chicken and the influence of environmental factors on their ratios[D].Yangling:Northwest A&F University, 2019.(in Chinese) |
[35] | 余维立.利用全基因组测序技术筛选影响鸭羽色、喙色及蹼色的候选基因及其关联验证[D].武汉:华中农业大学,2019.YU W L.Screening of duck candidate genes influencing the colors of plumage,beak and foot-web by whole genome sequencing and their association with color traits[D].Wuhan:Huazhong Agricultural University,2019.(in Chinese) |
[36] | LUO W,XU J G,LI Z H,et al.Genome-wide association study and transcriptome analysis provide new insights into the white/red earlobe color formation in chicken[J].Cell Physiol Biochem,2018,46(5):1768-1778. |
[37] | NIE C S,ZHANG Z B,ZHENG J X,et al.Genome-wide association study revealed genomic regions related to white/red earlobe color trait in the Rhode Island red chickens[J].BMC Genet,2016,17(1):115. |
[38] | AZOULAY Y,DRUYAN S,YADGARY L,et al.The viability and performance under hot conditions of featherless broilers versus fully feathered broilers[J].Poult Sci,2011,90(1):19-29. |
[39] | SOMES R G.Mutations and major variants of plumage and skin in chickens[M]//CRAWFORD R D.Poultry Breeding and Genetics.Amsterdam:Elsevier,1990:169-208. |
[40] | WELLS K L,HADAD Y,BEN-AVRAHAM D,et al.Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens[J].BMC Genomics,2012,13:257. |
[41] | NG C S,WU P,FOLEY J,et al.The chicken frizzle feather is due to anα-keratin (KRT75) mutation that causes a defective rachis[J].PLoS Genet,2012,8(7):e1002748. |
[42] | DORSHORST B,OKIMOTO R,ASHWELL C.Genomic regions associated with dermal hyperpigmentation, polydactyly and other morphological traits in the Silkie chicken[J].J Hered,2010,101(3):339-350. |
[43] | FENG C G,GAO Y,DORSHORST B,et al.A cis-regulatory mutation of PDSS2 causes silky-feather in chickens[J]. PLoS Genet,2014,10(8):e1004576. |
[44] | YANG S H,SHI Z Y,OU X Q,et al.Whole-genome resequencing reveals genetic indels of feathered-leg traits in domestic chickens[J]. J Genet,2019,98(2):47. |
[45] | ZHANG H,SHEN L Y,XU Z C,et al.Haplotype-based genome-wide association studies for carcass and growth traits in chicken[J].Poult Sci,2020,99(5):2349-2361. |
[46] | WRIGHT D,BOIJE H,MEADOWS J R S,et al.Copy number variation in intron 1 of SOX5 causes the Pea-comb phenotype in chickens[J].PLoS Genet,2009,5(6):e1000512. |
[47] | IMSLAND F,FENG C G,BOIJE H,et al.The Rose-comb mutation in chickens constitutes a structural rearrangement causing both altered comb morphology and defective sperm motility[J].PLoS Genet,2012,8(6):e1002775. |
[48] | DORSHORST B,HARUN-OR-RASHID M,BAGHERPOOR A J,et al.A genomic duplication is associated with ectopic eomesodermin expression in the embryonic chicken comb and two duplex-comb phenotypes[J].PLoS Genet,2015,11(3):e1004947. |
[49] | BAI H,ZHU J,SUN Y Y,et al.Identification of genes related to beak deformity of chickens using digital gene expression profiling[J].PLoS One,2014,9(9):e107050. |
[50] | BAI H,SUN Y,LIU N,et al.Genome-wide detection of CNVs associated with beak deformity in chickens using high-density 600K SNP arrays[J].Anim Genet,2018,49(3):226-236. |
[51] | LIAO R,ZHANG X,CHEN Q,et al.Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens[J].Anim Genet,2016,47(5):588-596. |
[52] | HU Y S,XU H P,LI Z H,et al.Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers[J].PLoS One,2013,8(2):e56411. |
[53] | WANG Y Z,BU L N,CAO X M,et al.Genetic dissection of growth traits in a unique chicken advanced intercross line[J].Front Genet,2020,11:894. |
[54] | LI G S,LIU W W,ZHANG F,et al.Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks[J].Genomics,2020,112(6):5021-5028. |
[55] | JIN S H,FENG Z,WANG Y Y,et al.Deletion of Indian hedgehog gene causes dominant semi-lethal creeper trait in chicken[J].Sci Rep,2016,6:30172. |
[56] | YANG Y Z,WANG H Y,LI G Q,et al.Exploring the genetic basis of fatty liver development in geese[J].Sci Rep, 2020,10(1):14279. |
[57] | ZHANG G X,FAN Q C,WANG J Y,et al.Genome-wide association study on reproductive traits in Jinghai yellow chicken[J].Anim Reprod Sci,2015,163:30-34. |
[58] | JIN C F,CHEN Y J,YANG Z Q,et al.A genome-wide association study of growth trait-related single nucleotide polymorphisms in Chinese Yancheng chickens[J].Genet Mol Res,2015,14(4):15783-15792. |
[59] | REYER H,HAWKEN R,MURANI E,et al.The genetics of feed conversion efficiency traits in a commercial broiler line[J].Sci Rep,2015,5:16387. |
[60] | LI F W,HAN H X,LEI Q X,et al.Genome-wide association study of body weight in Wenshang barred chicken based on the SLAF-seq technology[J].J Appl Genet,2018,59(3):305-312. |
[61] | KUDINOV A A,DEMENTIEVA N V,MITROFANOVA O V,et al.Genome-wide association studies targeting the yield of extraembryonic fluid and production traits in Russian white chickens[J].BMC Genomics,2019,20(1):270. |
[62] | MEBRATIE W,REYER H,WIMMERS K,et al.Genome wide association study of body weight and feed efficiency traits in a commercial broiler chicken population,a re-visitation[J].Sci Rep,2019,9(1):922. |
[63] | MOREIRA G C M,POLETI M D,PÉRTILLE F,et al.Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach[J].BMC Genet,2019,20(1):83. |
[64] | CAO X M,WANG Y Z,SHU D M,et al.Food intake-related genes in chicken determined through combinatorial genome-wide association study and transcriptome analysis[J].Anim Genet,2020,51(5):741-751. |
[65] | DENG M T,ZHU F,YANG Y Z,et al.Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks[J].BMC Genomics,2019,20(1):1. |
[66] | LIU R R,SUN Y F,ZHAO G P,et al.Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens[J].PLoS One,2013,8(4):e61172. |
[67] | ZHANG T,FAN Q C,WANG J Y,et al.Genome-wide association study of meat quality traits in chicken[J].Genet Mol Res,2015,14(3):10452-10460. |
[68] | DENG M T,ZHANG F,ZHU F,et al.Genome-wide association study reveals novel loci associated with fat-deposition and meat-quality traits in Pekin ducks[J].Anim Genet,2020,51(6):953-957. |
[69] | WANG W H,ZHANG T,WANG J Y,et al.Genome-wide association study of 8 carcass traits in Jinghai yellow chickens using specific-locus amplified fragment sequencing technology[J].Poult Sci,2016,95(3):500-506. |
[70] | HUANG S W,HE Y T,YE S P,et al.Genome-wide association study on chicken carcass traits using sequence data imputed from SNP array[J].J Appl Genet,2018,59(3):335-344. |
[71] | MOREIRA G C M,SALVIAN M,BOSCHIERO C,et al.Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens[J].BMC Genomics,2019,20(1):669. |
[72] | KUTTAPPAN V A,HARGIS B M,OWENS C M.White striping and woody breast myopathies in the modern poultry industry:a review[J].Poult Sci,2016,95(11):2724-2733. |
[73] | BAILEY R A,WATSON K A,BILGILI S F,et al.The genetic basis of pectoralis major myopathies in modern broiler chicken lines[J].Poult Sci,2015,94(12):2870-2879. |
[74] | KUTTAPPAN V A,BREWER V B,APPLE J K,et al.Influence of growth rate on the occurrence of white striping in broiler breast fillets[J].Poult Sci,2012,91(10):2677-2685. |
[75] | MUDALAL S,BABINI E,CAVANI C,et al.Quantity and functionality of protein fractions in chicken breast fillets affected by white striping[J].Poult Sci,2014,93(8):2108-2116. |
[76] | TIJARE V V,YANG F L,KUTTAPPAN V A,et al.Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies[J].Poult Sci,2016,95(9):2167-2173. |
[77] | PAMPOUILLE E,BERRI C,BOITARD S,et al.Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens[J].BMC Genomics,2018,19(1):202. |
[78] | KONG H R,ANTHONY N B,ROWLAND K C,et al.Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens[J].Asian-Australas J Anim Sci,2018,31(1):13-18. |
[79] | SUN Y F,ZHAO G P,LIU R R,et al.The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study[J].BMC Genomics,2013,14:458. |
[80] | ASLAM M L,BASTIAANSEN J W,CROOIJMANS R P,et al.Whole genome QTL mapping for growth,meat quality and breast meat yield traits in turkey[J].BMC Genet,2011,12:61. |
[81] | KILEH-WAIS M,ELSEN J M,VIGNAL A,et al.Detection of QTL controlling metabolism,meat quality,and liver quality traits of the overfed interspecific hybrid mule duck[J].J Anim Sci,2013,91(2):588-604. |
[82] | LE BIHAN-DUVAL E,NADAF J,BERRI C,et al.Detection of a cis eQTL controlling BCMO1 gene expression leads to the identification of a QTG for chicken breast meat color[J].PLoS One,2011,6(7):e14825. |
[83] | JLALI M,GRAULET B,CHAUVEAU-DURIOT B,et al.A mutation in the promoter of the chickenβ,β-carotene 15,15'-monooxygenase 1 gene alters xanthophyll metabolism through a selective effect on its mRNA abundance in the breast muscle[J].J Anim Sci,2012,90(12):4280-4288. |
[84] | GAO S Z,ZHAO S M.Physiology,affecting factors and strategies for control of pig meat intramuscular fat[J].Recent Pat Food Nutr Agric,2009,1(1):59-74. |
[85] | LIU L,CUI H X,XING S Y,et al.Effect of divergent selection for intramuscular fat content on muscle lipid metabolism in chickens[J].Animals (Basel),2019,10(1):4. |
[86] | ZHANG M,LI D H,ZHAI Y H,et al.The landscape of DNA methylation associated with the transcriptomic network of intramuscular adipocytes generates insight into intramuscular fat deposition in chicken[J].Front Cell Dev Biol,2020,8:206. |
[87] | SCOTT T A,SILVERSIDES F G.The effect of storage and strain of hen on egg quality[J].Poult Sci,2000,79(12):1725-1729. |
[88] | LIU W B,LI D F,LIU J F,et al.A genome-wide SNP scan reveals novel loci for egg production and quality traits in White Leghorn and brown-egg dwarf layers[J].PLoS One,2011,6(12):e28600. |
[89] | ABASHT B,SANDFORD E,ARANGO J,et al.Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations[J].BMC Genomics, 2009, 10(S2):S2. |
[90] | QU L,SHEN M M,GUO J,et al.Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study[J].Arch Anim Breed,2019,62(1):113-123. |
[91] | TUISKULA-HAAVISTO M,HONKATUKIA M,PREISINGER R,et al.Quantitative trait loci affecting eggshell traits in an F2 population[J].Anim Genet,2011,42(3):293-299. |
[92] | HONKATUKIA M,TUISKULA-HAAVISTO M,ARANGO J,et al.QTL mapping of egg albumen quality in egg layers[J]. Genet Sel Evol,2013,45(1):31. |
[93] | SUN C J,LU J,YI G Q,et al.Promising loci and genes for yolk and ovary weight in chickens revealed by a genome-wide association study[J].PLoS One,2015,10(9):e0137145. |
[94] | WOLC A,ARANGO J,SETTAR P,et al.Genetics of male reproductive performance in White Leghorns[J].Poult Sci, 2019, 98(7):2729-2733. |
[95] | AZMAL S A,NAN J H,BHUIYAN A A,et al.A genome-wide single nucleotide polymorphism scan reveals genetic markers associated with fertility rate in Chinese Jing Hong chicken[J].Poult Sci,2020,99(6):2873-2887. |
[96] | SUN C J,QU L,YI G Q,et al.Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population[J].BMC Genomics,2015,16(1):565. |
[97] | LIU Z,YANG N,YAN Y Y,et al.Genome-wide association analysis of egg production performance in chickens across the whole laying period[J].BMC Genet,2019,20(1):67. |
[98] | WOLC A,JANKOWSKI T,ARANGO J,et al.Investigating the genetic determination of clutch traits in laying hens[J].Poult Sci,2019,98(1):39-45. |
[99] | AZMAL S A,BHUIYAN A A,OMAR A I,et al.Novel polymorphisms in RAPGEF6 gene associated with egg-Laying rate in Chinese Jing Hong chicken using genome-wide SNP scan[J].Genes (Basel),2019,10(5):384. |
[100] | YUAN J W,SUN C J,DOU T C,et al.Identification of promising mutants associated with egg production traits revealed by genome-wide association study[J].PLoS One,2015,10(10):e0140615. |
[101] | FARAHANI A H K,MOHAMMADI H,MORADI M H,et al.Identification of potential genomic regions for egg weight by a haplotype-based genome-wide association study using Bayesian methods[J].Br Poult Sci,2020,61(3):251-257. |
[102] | LIU Z,SUN C J,YAN Y Y,et al.Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study[J].Sci Rep,2018,8(1):10832. |
[103] | DARWISH H Y A,DALIRSEFAT S B,DONG X G,et al.Genome-wide association study and a post replication analysis revealed a promising genomic region and candidate genes for chicken eggshell blueness[J].PLoS One,2019,14(1):e0209181. |
[104] | YI G Q,SHEN M M,YUAN J W,et al.Genome-wide association study dissects genetic architecture underlying longitudinal egg weights in chickens[J].BMC Genomics,2015,16:746. |
[105] | ZHANG M M,YANG L,SU Z C,et al.Genome-wide scan and analysis of positive selective signatures in Dwarf Brown-egg Layers and Silky Fowl chickens[J].Poult Sci,2017,96(12):4158-4171. |
[106] | LIU H H,HU J,GUO Z B,et al.A single nucleotide polymorphism variant located in the cis-regulatory region of the ABCG2 gene is associated with mallard egg colour[J].Mol Ecol,2021,30(6):1477-1491. |
[107] | YU S G,CHU W W,ZHANG L F,et al.Identification of laying-related SNP markers in geese using RAD sequencing[J]. PLoS One,2015,10(7):e0131572. |
[108] | ZHAO Q Q,CHEN J P,ZHANG X H,et al.Genome-wide association analysis reveals key genes responsible for egg production of Lion Head Goose[J].Front Genet,2019,10:1391. |
[109] | WOLC A,ARANGO J,JANKOWSKI T,et al.Genome-wide association study for Marek's disease mortality in layer chickens[J].Avian Dis,2013,57(2S):395-400. |
[110] | LI D F,LIAN L,QU L J,et al.A genome-wide SNP scan reveals two loci associated with the chicken resistance to Marek's disease[J].Anim Genet,2013,44(2):217-222. |
[111] | YAN Y Y,YANG N,CHENG H H,et al.Genome-wide identification of copy number variations between two chicken lines that differ in genetic resistance to Marek's disease[J].BMC Genomics,2015,16:843. |
[112] | BAI H,HE Y H,DING Y,et al.Genome-wide characterization of copy number variations in the host genome in genetic resistance to Marek's disease using next generation sequencing[J].BMC Genet,2020,21(1):77. |
[113] | LI X H,NIE C S,LIU Y C,et al.A genome-wide association study explores the genetic determinism of host resistance to Salmonella pullorum infection in chickens[J].Genet Sel Evol,2019,51(1):51. |
[114] | WALUGEMBE M,MUSHI J R,AMUZU-AWEH E N,et al.Genetic analyses of tanzanian local chicken ecotypes challenged with Newcastle disease virus[J].Genes (Basel),2019,10(7):546. |
[115] | LUO C L,QU H,MA J,et al.Genome-wide association study of antibody response to Newcastle disease virus in chicken[J].BMC Genet,2013,14:42. |
[116] | XU Y,LIU H,JIANG Y,et al.Genome-wide association studies reveal genetic loci associated with plasma cholinesterase activity in ducks[J].Anim Genet,2019,50(3):287-292. |
[117] | ZHUANG Z X,CHEN S E,CHEN C F,et al.Genome-wide association study on the body temperature changes of a broiler-type strain Taiwan country chickens under acute heat stress[J].J Therm Biol,2019,82:33-42. |
[118] | ZHUANG Z X,CHEN S E,CHEN C F,et al.Genomic regions and pathways associated with thermotolerance in layer-type strain Taiwan indigenous chickens[J].J Therm Biol,2020,88:102486. |
[119] | LIEN C Y,TIXIER-BOICHARD M,WU S W,et al.Detection of QTL for traits related to adaptation to sub-optimal climatic conditions in chickens[J].Genet Sel Evol,2017,49(1):39. |
[120] | JIANG S Y,XU H Y,SHEN Z N,et al.Genome-wide association analysis reveals novel loci for hypoxia adaptability in Tibetan chicken[J].Anim Genet,2018,49(4):337-339. |
[121] | ZHANG Z R,DU H R,BAI L J,et al.Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens[J].PLoS One,2018,13(3):e0193597. |
[122] | 扬州大学.一种采用SNP分子标记技术鉴别连城白鸭的方法:中国,202010604863.5[P].2020-08-11.Yangzhou University.Method for identifying Liancheng white ducks by adopting SNP molecular marker technology:CN,202010604863.5[P].2020-08-11.(in Chinese) |
[123] | 江苏省家禽科学研究所.一种利用分子标记鉴定太湖鸡的方法:中国,202011410854.9[P].2021-03-19.Jiangsu Institute of Poultry Sciences.Method for authenticating Taihu chickens by molecular marker:CN, 202011410854.9[P]2021-03-19.(in Chinese) |
[124] | 江苏省家禽科学研究所.用于寿光鸡种鉴定的分子标记引物组合及鉴定方法:中国, 202011417128.X[P].2020-12-04.Jiangsu Institute of Poultry Sciences.Molecular marker primer combination for identifying Shouguang chicken breeds and identification method:CN,202011417128.X[P].2020-12-04.(in Chinese) |
[125] | WOLC A,ZHAO H H,ARANGO J,et al.Response and inbreeding from a genomic selection experiment in layer chickens[J].Genet Sel Evol,2015,47(1):59. |
[126] | 中国农业科学院北京畜牧兽医研究所.一种白羽肉鸡剩余采食量的基因组选择方法:中国, 202010758975.6[P].2020-11-27.Institute of Animal Sciences of CAAS.Genome selection method of residual feed intake of white feather broilers:CN,202010758975.6[P].2020-11-27.(in Chinese) |
[127] | 中国农业科学院北京畜牧兽医研究所.一种白羽肉鸡产蛋数的基因组选择方法:中国, 202110744654.5[P].2021-10-26.Institute of Animal Science of CAAS.Genome selection method for egg number of white feather broilers:CN,20110744654.5[P].2021-10-26.(in Chinese) |
[128] | 华中农业大学.一种筛选种母鸡贮精能力性状候选位点的方法和应用:中国,202011564361.0[P].2021-04-30.Huazhong Agricultural University.Method for screening breeding hen sperm storage capacity character candidate sites and application:CN,202011564361.0[P].2021-04-30.(in Chinese) |
[129] | 郝晓东,黄超,郑麦青,等.全基因组选择育种技术在我国黄羽肉鸡产业中的初步实践[J].养禽与禽病防治,2020(3):2.HAO X D,HUANG C,ZHENG M Q,et al.Application of genome-wide selection breeding technology in yellow-feathered broilers industry in China[J].Poultry and Poultry Disease Control,2020(3):2.(Chinese) |
[130] | LIU R,ZHENG M,WANG J,et al.Effects of genomic selection for intramuscular fat content in breast muscle in Chinese local chickens[J].Anim Genet,2019,50(1):87-91. |
[131] | 四川农业大学.一种与鸭喙色性状相关的分子标记及其应用:中国,202010312162.4[P].2020-06-26.Sichuan Agricultural University.Molecular marker related to duck beak color and application thereof:CN, 202010312162.4[P].2020-06-26.(in Chinese) |
[132] | 四川农业大学.一种与鸭黑色和褐色羽性状相关的分子标记及其应用:中国,202010313269.0[P].2020-06-26.Sichuan Agricultural University.Molecular marker related to duck black and brown feather characters and application thereof:CN,202010313269.0[P].2020-06-26.(in Chinese) |
[133] | 四川农业大学.一种用于鉴定鸭黄麻羽性状的分子标记及其应用:中国,202010774418.3[P].2020-09-25.Sichuan Agricultural University.Molecular marker for identifying yellow brown feather character of ducks,and application thereof:CN,202010774418.3[P].2020-09-25.(in Chinese) |
[134] | 中国农业科学院北京畜牧兽医研究所.一种快速提高鸭群体青壳率的分子标记及应用:中国, 201911117176.4[P].2020-01-17.Institute of Animal Sciences of CAAS.Molecular marker for quickly increasing green shell rate of duck groups:CN,201911117176.4[P].2020-01-17.(in Chinese) |
[135] | 李光奇,杨宁,孙皓,等."京粉6号"粉壳蛋鸡配套系的培育[J].中国畜牧杂志,2020,56(5):61-64.LI G Q,YANG N,SUN H,et al.Cultivation of pink eggshell layers "Jing Tint 6"[J].Chinese Journal of Animal Science,2020,56(5):61-64.(in Chinese) |
[1] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[2] | WANG Yaxin, WANG Jing, TIAN Xuekai, YANG Gongshe, YU Taiyong. Application of Multi-omics Technology in the Study of Important Economic Traits of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1842-1853. |
[3] | DUAN Yixin, ZHANG Linyun, ZHAO Yongju. The Evaluated Methods and Influencing Factors of SNP Heritability and Its Application in Farmer Animal Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1854-1865. |
[4] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[5] | TU Yun, ZENG Yanan, ZHANG Zhenghao, HONG Rui, WANG Zhen, WU Ping, ZHOU Zeyang, YE Yiru, DU Yanan, ZUO Fuyuan, ZHANG Gongwei. Genetic Structure and Runs of Homozygosity Analysis of Fuling Buffalo and Southwest Buffalo Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1989-1998. |
[6] | LUO Ting, HAN Zhu, XU Yefen, CAI Lin, SUOLANG Sizhu, XU Jinhua, NIU Jiaqiang. Whole Genome Sequencing and Sequence Analysis on T10 of Mycoplasma bovis Strain from Yaks in Xizang [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2154-2167. |
[7] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[8] | WANG Zhongbo, LIU Shuang, HE Lixia, FENG Xue, YANG Mengli, WANG Shuzhe, LIU Yuan, FENG Lan, DING Xiaoling, JI Guoshang, YANG Runjun, ZHANG Lupei, MA Yun. Metabolomics Analysis on Different Muscle Tissues of Guyuan Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1565-1578. |
[9] | WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893. |
[10] | XIA Shuwen, CHEN Kunlin, SHEN Yangyang, AN Zhenjiang, ZHAO Fang, DING Qiang, ZHONG Jifeng, LIN Zhiping, WANG Huili. The Estimation of Genetic Parameters for Longevity Traits of Holstein Cows in Jiangsu Region [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1030-1039. |
[11] | SU Wennan, LIU Jiaqi, ZHONG Jiacheng, CHEN Jidang, ZHU Wanjun, ZHANG Yishan, ZHANG Jipei. Complete Genome Re-sequence and Comparative Genomic Analysis of Avibacterium paragallinarum from Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1208-1216. |
[12] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[13] | WANG Jinyu, ZHANG Kaichuan, WANG Ruijie, GAO Duo, JIANG Qifeng, JIA Kun. Whole Genome Analysis of a Pseudomonas aeruginosa Phage and the Effect of Combining with Antibiotics in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 727-738. |
[14] | WANG Yuanqing, WANG Jing, ZHU Bo, CHEN Yan, XU Lingyang, WANG Zezhao, ZHANG Lupei, GAO Huijiang, LI Junya, GAO Xue. Genomic Mating Research and Its Application in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 1-10. |
[15] | MU Xiangyu, XU Yunruo, HU Jingyi, ZHOU Xinyan, ZHU Yongwen. Advances in Research on the Nutritional Requirements of Branched-Chain Amino Acids in Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 31-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||