Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (8): 3640-3649.doi: 10.11843/j.issn.0366-6964.2025.08.008
• Review • Previous Articles Next Articles
LU Songcui(), ZHENG Nan, WANG Jiaqi, ZHANG Yangdong*(
)
Received:
2024-09-03
Online:
2025-08-23
Published:
2025-08-28
Contact:
ZHANG Yangdong
E-mail:lusongcui0108@163.com;zhangyangdong@caas.cn
CLC Number:
LU Songcui, ZHENG Nan, WANG Jiaqi, ZHANG Yangdong. Research Progress on Short Chain Fatty Acids Detection Methods[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3640-3649.
Table 1
Derivatization reagents and reaction conditions for short-chain fatty acids"
样品 Sample | 衍生试剂 Derivatization reagents | 反应条件 Reaction conditions | 检测数量 Number of detections | 类型 Types | 检测仪器 Detection instruments | 定量限 Limits of quantification | 文献 References |
牛奶 Milk | 氢氧化钠甲醇溶液、乙酰氯甲醇 Sodium hydroxide methanol, Acetyl chloride methanol | 50 ℃/30 min皂化 90 ℃/150 min酯化 50℃/30min Saponification 90℃/150min Esterify | C4:0、C5:0、C6:0 | 总SCFAs | GC-MS | 21.7~193.2 μg·L-1 | [ |
血清/脑脊液 Blood serum/cerebrospinal fluid | 三甲基硅烷基(TMS) Trimethylsilyl | 90 ℃/30 min衍生化 90℃/30min derivatization | C3:0、C4:0、isoC4:0 C5:0、isoC5:0、C6:0 | 总SCFAs | GC-MS | 0.06~0.9 μmol·L-1 | [ |
粪便 Feces | 氯甲酸苄酯 Benzyl chloroformate | 离心、涡旋 Centrifugal, vortex | C2:0、C3:0、C4:0、C5:0、C6:0、isoC4:0、iso C5:0、anteisoC5:0、isoC6:0、anteisoC6:0 | 总SCFAs | GC-MS | 0.1~5 pg | [ |
粪便 Feces | 五氟溴苄 Pentafluorobenzyl bromide | 60 ℃/90 min衍生化 60℃/90min derivatization | C2:0、C3:0、C4:0、isoC4:0、C5:0、isoC5:0、C6:0、isoC6:0 | 总SCFAs | GC-MS | 0.244~0.977 μmol·L-1 | [ |
粪便 Feces | 3-硝基苯肼 3-nitrophenylhydrazine | 40 ℃/45 min衍生化 40℃/45min derivatization | C2:0、C3:0、C4:0、isoC4:0、C5:0、isoC5:0、C6:0、isoC6:0 | 总SCFAs | HPLC-UV | < 0.04 mmol·L-1 | [ |
粪便 Feces | 氯甲酸丙酯 Propyl chloroformate | 超声、涡旋 Ultrasonic, vortex | C2:0、C3:0、C4:0、isoC4:0、C5:0、isoC5:0、C6:0 | 游离 SCFAs | GC-MS | 0.444~1.400 μmol·kg-1 | [ |
粪便 Feces | 氯甲酸异丁酯 Isobutyl chloroformate | 涡旋 vortex | C2:0、C3:0、C4:0、isoC4:0、C5:0 | 总SCFAs | GC-MS | / | [ |
牛奶 Milk | 氯甲酸乙酯 Ethyl chloroformate | 涡旋 vortex | C4:0、C6:0 | 游离 SCFAs | GC-MS | 0.02μg·mL-1 | [ |
尿液/血浆 Urine /plasma | 4-乙酰氨基-7-巯基-2, 1, 3-苯并噁二唑 4-acetamido-7-mercapto-2, 1, 3-benzoxadiazole | 室温/5 min衍生化 Room temperature/5min derivatization | C2:0、C3:0、C4:0、C5:0、C6:0、isoC4:0、isoC5:0、anteisoC5:0、isoC6:0、anteisoC6:0 | 总SCFAs | LC-MS | < 25.20 ng·mL-1 | [ |
Table 2
Quantitative method for fatty acids"
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 文献 References |
面积归一化法 Area normalization method | 重复性较好,方法简便准确,进样浓度和进样量的变化对结果的影响小 The reproducibility is good, the method is simple and accurate, and the change of injection concentration and injection volume has little impact on the results | 要求所有组分流出并被检测到; 误差大; 只能计算相对含量; 不宜用于微量物质的检测计算 All components are required to flow out and be detected; Large error; Only relative content can be calculated; It should not be used for the detection and calculation of trace substances | [ |
外标法 External standard method | 操作简单,有标准曲线就能定量,计算时可以直接从标曲上读出含量 The operation is simple, there is a standard curve to quantify, and the content can be read directly from the curl when calculating | 需要每次样品分析的前处理条件和色谱条件相同,因此容易出现较大误差 The pretreatment and chromatographic conditions need to be the same for each sample analysis, so they are prone to large errors | [ |
内标法 Internal standard method | 定量的准确度和精密度较高,一定程度上可以校正试验前处理过程所带来的误差 The accuracy and precision of quantification are high, and the error caused by the pre-test treatment process can be corrected to a certain extent | 对内标物的选择要求严格 The selection of internal standards is strict | [ |
1 |
KOH A , DE VADDER F , KOVATCHEVA-DATCHARY P , et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165 (6): 1332- 1345.
doi: 10.1016/j.cell.2016.05.041 |
2 |
STINSON L F , GAY M C L , KOLEVA P T , et al. Human milk from atopic mothers has lower levels of short chain fatty acids[J]. Front Immunol, 2020, 11, 1427.
doi: 10.3389/fimmu.2020.01427 |
3 |
MACFARLANE S , MACFARLANE G T . Regulation of short-chain fatty acid production[J]. Proc Nutr Soc, 2003, 62 (1): 67- 72.
doi: 10.1079/PNS2002207 |
4 |
NICHOLSON J K , HOLMES E , KINROSS J , et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336 (6086): 1262- 1267.
doi: 10.1126/science.1223813 |
5 |
SASAKI M , SUAINI N H A , AFGHANI J , et al. Systematic review of the association between short chain fatty acids and allergic diseases[J]. Allergy, 2024, 79 (7): 1789- 1811.
doi: 10.1111/all.16065 |
6 |
RIOS-COVIAN D , GONZÁLEZ S , NOGACKA A M , et al. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors[J]. Front Microbiol, 2020, 11, 973.
doi: 10.3389/fmicb.2020.00973 |
7 |
CANI P D , VAN HUL M , LEFORT C , et al. Microbial regulation of organismal energy homeostasis[J]. Nat Metab, 2019, 1 (1): 34- 46.
doi: 10.1038/s42255-018-0017-4 |
8 |
SUN M M , WU W , LIU Z J , et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. J Gastroenterol, 2017, 52 (1): 1- 8.
doi: 10.1007/s00535-016-1242-9 |
9 | HOLMES Z C , SILVERMAN J D , DRESSMAN H K , et al. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition[J]. mBio, 2020, 11 (4): e00914- 20. |
10 |
RAHMAN M N , DIANTINI A , FATTAH M , et al. A highly sensitive, simple, and fast gas chromatography-mass spectrometry method for the quantification of serum short-chain fatty acids and their potential features in central obesity[J]. Anal Bioanal Chem, 2021, 413 (27): 6837- 6844.
doi: 10.1007/s00216-021-03639-3 |
11 |
NATARAJAN N , HORI D , FLAVAHAN S , et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41[J]. Physiol Genomics, 2016, 48 (11): 826- 834.
doi: 10.1152/physiolgenomics.00089.2016 |
12 |
REMELY M , AUMUELLER E , MEROLD C , et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity[J]. Gene, 2014, 537 (1): 85- 92.
doi: 10.1016/j.gene.2013.11.081 |
13 | DE BENI ARRIGONI M , MARTINS C L , FACTORI M A . Lipid metabolism in the rumen[J]. Rumenology, 2016, 103- 126. |
14 |
LIU L L Y , WU P F , GUO A W , et al. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows[J]. Front Vet Sci, 2023, 10, 1206346.
doi: 10.3389/fvets.2023.1206346 |
15 |
ASCHENBACH J R , KRISTENSEN N B , DONKIN S S , et al. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough[J]. IUBMB Life, 2010, 62 (12): 869- 877.
doi: 10.1002/iub.400 |
16 |
SHEN H , XU Z H , SHEN Z M , et al. The regulation of ruminal short-chain fatty acids on the functions of rumen barriers[J]. Front Physiol, 2019, 10, 1305.
doi: 10.3389/fphys.2019.01305 |
17 | 刘振民. 乳脂及乳脂产品科学与技术[M]. 北京: 中国轻工业出版社, 2019. |
LIU Z M . Science and technology of milk fat and milk fat products[M]. Beijing: China Light Industry Press, 2019. | |
18 |
ROHDE J K , FUH M M , EVANGELAKOS I , et al. A gas chromatography mass spectrometry-based method for the quantification of short chain fatty acids[J]. Metabolites, 2022, 12 (2): 170.
doi: 10.3390/metabo12020170 |
19 |
YAO L X , DAVIDSON E A , SHAIKH M W , et al. Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS[J]. Anal Bioanal Chem, 2022, 414 (15): 4391- 4399.
doi: 10.1007/s00216-021-03785-8 |
20 |
SMITH M , POLITE L , CHRISTY A , et al. An improved validated method for the determination of short-chain fatty acids in human fecal samples by gas chromatography with flame ionization detection (GC-FID)[J]. Metabolites, 2023, 13 (11): 1106.
doi: 10.3390/metabo13111106 |
21 | DEI CAS M , PARONI R , SACCARDO A , et al. A straightforward LC-MS/MS analysis to study serum profile of short and medium chain fatty acids[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1154 (1): 121982. |
22 |
LI C , LIU Z Q , BATH C , et al. Optimised method for short-chain fatty acid profiling of bovine milk and serum[J]. Molecules, 2022, 27 (2): 436.
doi: 10.3390/molecules27020436 |
23 |
CAI J , ZHANG J , TIAN Y , et al. Orthogonal comparison of GC-MS and 1H NMR spectroscopy forshort chain fatty acid quantitation[J]. Anal Chem, 2017, 89 (15): 7900- 7906.
doi: 10.1021/acs.analchem.7b00848 |
24 |
JACOBS D M , DELTIMPLE N , VAN VELZEN E , et al. 1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome[J]. NMR Biomed, 2008, 21 (6): 615- 626.
doi: 10.1002/nbm.1233 |
25 | 食品安全国家标准食品中脂肪酸的测定: GB 5009.168—2016[S]. 北京: 中国标准出版社, 2016. |
National Standards for Food Safety Determination of fatty acids in food[S]. Beijing: China National Standards Press, 2016. (in Chinese) | |
26 |
MULAT D G , FEILBERG A . GC/MS method for determining carbon isotope enrichment and concentration of underivatized short-chain fatty acids by direct aqueous solution injection of biogas digester samples[J]. Talanta, 2015, 143, 56- 63.
doi: 10.1016/j.talanta.2015.04.065 |
27 | RYO K , KEIKO N , NORIHISA W , et al. Butyric acid in saliva of chronic periodontitis patients induces transcription of the EBV lytic switch activator BZLF1: a pilot study[J]. In Vivo (Athens, Greece), 2020, 34 (2): 587- 594. |
28 | 麦子盈, 覃思意, 李莎莎, 等. 生物样品中短链脂肪酸的分析方法研究进展[J]. 化学试剂, 2022, 44 (7): 1020- 1027. |
MAI Z Y , QIN S Y , LI S S , et al. Progress of analytic methods for short-chain fatty acids on biological samples[J]. Chemical Reagents, 2022, 44 (7): 1020- 1027. | |
29 |
SOARES DA SILVA BURATO J , VARGAS MEDINA D A , DE TOFFOLI A L , et al. Recent advances and trends in miniaturized sample preparation techniques[J]. J Sep Sci, 2020, 43 (1): 202- 225.
doi: 10.1002/jssc.201900776 |
30 |
PAUTOVA A K , BURNAKOVA N A , BELOBORODOVA N V , et al. Simultaneous determination of aromatic, short-chain fatty and dicarboxylic acids in blood serum and cerebrospinal fluid by gas chromatography-mass spectrometry[J]. J Anal Chem, 2023, 78, 1942- 1954.
doi: 10.1134/S1061934823140058 |
31 | 贾益群, 叶福媛, 王双, 等. 生物样品中短链脂肪酸的快速提取与分析方法[J]. 实验室研究与探索, 2012, 31 (7): 262- 264. |
JIA Y Q , YE F Y , WANG S , et al. Extraction and determination of short-chain fatty acids in biological samples[J]. Research and Exploration in Laboratory, 2012, 31 (7): 262- 264. | |
32 |
WU X , CHEN M , WANG F , et al. A new isopropyl esterification method for quantitative profiling of short-chain fatty acids in human and cow milk by gas chromatograph-mass spectrometer[J]. J Dairy Sci, 2024, 107 (8): 5366- 5375.
doi: 10.3168/jds.2023-24320 |
33 | DENG G , XIE L , XU S , et al. Fiber nanoarchitectonics for pre-treatments in facile detection of short-chain fatty acids in waste water and faecal samples[J]. Polymers(Basel), 2021, 13 (22): 3906. |
34 |
WANG H Y , WANG C , GUO L X , et al. Simultaneous determination of short-chain fatty acids in human feces by HPLC with ultraviolet detection following chemical derivatization and solid-phase extraction segmental elution[J]. J Sep Sci, 2019, 42 (15): 2500- 2509.
doi: 10.1002/jssc.201900249 |
35 |
FU Z , JIA Q , ZHANG H , et al. Simultaneous quantification of eleven short-chain fatty acids by derivatization and solid phase microextraction-gas chromatography tandem mass spectrometry[J]. J Chromatogr A, 2022, 1661, 462680.
doi: 10.1016/j.chroma.2021.462680 |
36 |
BIANCHI F , DALL'ASTA M , DEL RIO D , et al. Development of a headspace solid-phase microextraction gas chromatography-mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation[J]. Food Chem, 2011, 129 (1): 200- 205.
doi: 10.1016/j.foodchem.2011.04.022 |
37 |
FIORINI D , PACETTI D , GABBIANELLI R , et al. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids[J]. J Chromatogr A, 2015, 1409, 282- 287.
doi: 10.1016/j.chroma.2015.07.051 |
38 |
GONZÁLEZ-CÓRDOVA A F , VALLEJO-CORDOBA B . Quantitative determination of short-chain free fatty acids in milk using solid-phase microextraction and gas chromatography[J]. J Agric Food Chem, 2001, 49 (10): 4603- 4608.
doi: 10.1021/jf010108d |
39 |
TRIVEDI N , ERICKSON H E , BALA V , et al. A concise review of liquid chromatography-mass spectrometry-based quantification methods for short chain fatty acids as endogenous biomarkers[J]. Int J Mol Sci, 2022, 23 (21): 13486.
doi: 10.3390/ijms232113486 |
40 |
CHEN M , WANG F , WU X , et al. Updating the fatty acid profiles of retail bovine milk in China based on an improved GC-MS method: implications for nutrition[J]. Front Nutr, 2023, 10, 1204005.
doi: 10.3389/fnut.2023.1204005 |
41 |
LI M , ZHU R , SONG X , et al. A sensitive method for the quantification of short-chain fatty acids by benzyl chloroformate derivatization combined with GC-MS[J]. Analyst, 2020, 145 (7): 2692- 2700.
doi: 10.1039/D0AN00005A |
42 |
HE L , PRODHAN M A I , YUAN F , et al. Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1092, 359- 367.
doi: 10.1016/j.jchromb.2018.06.028 |
43 | ORATA F. Derivatization reactions and reagents for gas chromatography analysis[C]//. In advanced gas chromatography-progress in agricultural, biomedical and industrial applications. 2012: 83-108. |
44 | 张晓伟, 孙鑫, 李秀娟, 等. 衍生化-顶空固相微萃取-气相色谱法测定大鼠粪便中游离短链脂肪酸[J]. 华中农业大学学报, 2021, 40 (5): 160- 168. |
ZHANG X W , SUN X , LI X J , et al. Determination of free short-chain fatty acids in rat feces by derivatization-headspace solid-phase microextraction-gas chromatography[J]. Journal of Huazhong Agricultural University, 2021, 40 (5): 160- 168. | |
45 |
FURUHASHI T , SUGITATE K , NAKAI T , et al. Rapid profiling method for mammalian feces short chain fatty acids by GC-MS[J]. Anal Biochem, 2018, 543, 51- 54.
doi: 10.1016/j.ab.2017.12.001 |
46 |
AMER B , NEBEL C , BERTRAM H C , et al. Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography-mass spectrometry[J]. Int Dairy J, 2013, 32 (2): 199- 203.
doi: 10.1016/j.idairyj.2013.05.016 |
47 |
JAOCHICO A , SANGARAJU D , SHAHIDI-LATHAM S K . A rapid derivatization based LC-MS/MS method for quantitation of short chain fatty acids in human plasma and urine[J]. Bioanalysis, 2019, 11 (8): 741- 753.
doi: 10.4155/bio-2018-0241 |
48 |
ZHAO G H , NYMAN M , JÖNSSON J A . Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography[J]. Biomed Chromatogr, 2006, 20 (8): 674- 682.
doi: 10.1002/bmc.580 |
49 |
GARCÍA-VILLALBA R , GIMÉNEZ-BASTIDA J A , GARCÍA-CONESA M T , et al. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples[J]. J Sep Sci, 2012, 35 (15): 1906- 1913.
doi: 10.1002/jssc.201101121 |
50 |
ZHANG C , FAN L , ZHAO H . Rapid detection of short-chain fatty acids in biological samples[J]. Chromatographia, 2020, 83 (2): 305- 310.
doi: 10.1007/s10337-019-03824-8 |
51 |
晏慧莉, 张富新, 李延华, 等. 非衍生化-气相色谱法测定羊奶中短中链游离脂肪酸[J]. 食品科学, 2014, 35 (16): 138- 142.
doi: 10.7506/spkx1002-6630-201416027 |
YAN H L , ZHANG F X , LI Y H , et al. Determination of free fatty acids in goat milk by gas chromatography without derivatization[J]. Food Science, 2014, 35 (16): 138- 142.
doi: 10.7506/spkx1002-6630-201416027 |
|
52 |
ZHENG X , QIU Y , ZHONG W , et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids[J]. Metabolomics, 2013, 9 (4): 818- 827.
doi: 10.1007/s11306-013-0500-6 |
53 |
MICALIZZI G , BUZZANCA C , CHIAIA V , et al. Measurement of short-chain fatty acids in human plasma by means of fast gas chromatography-mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2024, 1235, 124044.
doi: 10.1016/j.jchromb.2024.124044 |
54 |
SCORTICHINI S , BOARELLI M C , SILVI S , et al. Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1143, 121972.
doi: 10.1016/j.jchromb.2020.121972 |
55 |
LIEBISCH G , ECKER J , ROTH S , et al. Quantification of fecal short chain fatty acids by liquid chromatography tandem mass spectrometry-investigation of pre-analytic stability[J]. Biomolecules, 2019, 9 (4): 121.
doi: 10.3390/biom9040121 |
56 |
CHEN Z , WU Y , SHRESTHA R , et al. Determination of total, free and esterified short-chain fatty acid in human serum by liquid chromatography-mass spectrometry[J]. Ann Clin Biochem, 2019, 56 (2): 190- 197.
doi: 10.1177/0004563218801393 |
57 | SONG H E , LEE H Y , KIM S J , et al. A facile profiling method of short chain fatty acids using liquid chromatography-mass spectrometry[J]. Metabolites, 2019, 9 (9): 193. |
58 |
CALVIGIONI M , BERTOLINI A , CODINI S , et al. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains[J]. Front Microbiol, 2023, 14, 1124144.
doi: 10.3389/fmicb.2023.1124144 |
59 |
HUART J , CIRILLO A , SAINT-REMY A , et al. The faecal abundance of short chain fatty acids is increased in men with a non-dipping blood pressure profile[J]. Acta Cardiol, 2022, 77 (4): 307- 310.
doi: 10.1080/00015385.2021.1901020 |
60 |
HU F , FURIHATA K , KATO Y , et al. Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy[J]. J Agric Food Chem, 2007, 55 (11): 4307- 4311.
doi: 10.1021/jf062803x |
61 |
GÓMEZ-GALLEGO C , MORALES J M , MONLEÓN D , et al. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota[J]. Nutrients, 2018, 10 (10): 1355.
doi: 10.3390/nu10101355 |
62 |
O'CALLAGHAN T F , VÁZQUEZ-FRESNO R , SERRA-CAYUELA A , et al. Pasture feeding changes the bovine rumen and milk metabolome[J]. Metabolites, 2018, 8 (2): 27.
doi: 10.3390/metabo8020027 |
63 |
WIKING L , L∅KKE M M , KIDMOSE U , et al. Comparison between novel and standard methods for analysis of free fatty acids in milk-including relation to rancid flavour[J]. Int Dairy J, 2017, 75, 22- 29.
doi: 10.1016/j.idairyj.2017.07.001 |
64 |
PHAM U , ALVARADO L , SUESS G J , et al. Separation of short and medium-chain fatty acids using capillary electrophoresis with indirect photometric detection: Part Ⅰ: Identification of fatty acids in rat feces[J]. Electrophoresis, 2021, 42 (19): 1914- 1923.
doi: 10.1002/elps.202100100 |
65 |
UKEDA H , FUJITA Y , SAWAMURA M , et al. Determination of short-chain fatty acids in raw milk using a microbial sensor and the relationship with milk quality[J]. Anal Sci, 1994, 10, 683- 685.
doi: 10.2116/analsci.10.683 |
66 | 张亭妍, 王宏雁, 刘钟栋. 中短链脂肪酸结构脂的合成工艺[J]. 食品工业, 2021, 42 (4): 175- 179. |
ZHANG T Y , WANG H Y , LIU Z D . The synthesis process of middle- and short-chain triglycerides[J]. Food Industry, 2021, 42 (4): 175- 179. | |
67 | 卜子晨, 郑诗琪, 王佳, 等. 短链脂肪酸气相色谱-质谱测定方法的建立[J]. 中国食品学报, 2023, 23 (9): 261- 265. |
BU Z C , ZHENG S Q , WANG J , et al. Establishment of gas chromatography-mass spectrometry methodof a short-chain fatty acid[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23 (9): 261- 265. | |
68 |
SAHA S , DAY-WALSH P , SHEHATA E , et al. Development and validation of a LC-MS/MS technique for the analysis of short chain fatty acids in tissues and biological fluids without derivatisation using isotope labelled internal standards[J]. Molecules, 2021, 26 (21): 6444.
doi: 10.3390/molecules26216444 |
[1] | SONG Lin, ZHAO Xiaowei, QI Yingjie, ZHANG Yangdong. Research Progress on the Effect of Short-chain Fatty Acids on Gastrointestinal Microbiota in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2082-2092. |
[2] | LIAO Yiwen, YE Jingfen, WU Shaobi, CHEN Shixiong, YANG Wan, LUO Xue, YANG Qi. Development of Ring-mediated Isothermal Amplification Technology and Its Application to the Detection of Drug Resistance Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1621-1631. |
[3] | XIAN Ge, LIU Huimin, WANG Jiaqi, ZHENG Nan. Structures, Functions and Detection Methods of A1 and A2 β-casein in Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5440-5451. |
[4] | LÜ Daiyue, CHEN Yanfei, ZHAI Tianshu, CAO Shengbo, XUE Qinghong. Research Progress and Application of Emerging Virus Detection Methods and Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5398-5411. |
[5] | LI Zhaoyan, GAO Jiang, GUO Shihui, ZHAO Ruqian, MA Wenqiang. Advances in Detection Methods and Control Solutions for Feline Allergens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2272-2279. |
[6] | WU Diange, XIA Miao, YAN An, JIANG Haotian, FAN Jiaqi, ZHOU Siyuan, WEI Xu, LIU Shudong, CHEN Baojiang. Effects of Carvacrol on Growth Performance, Nutrient Apparent Digestibility, Intestinal Morphology, Short-chain Fatty Acids Content and Intestinal Flora in Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4233-4246. |
[7] | REN Man, LIU Xin, TANG Yulin, ZHANG Ruixue, QIN Junjie, ZHU Hao, GUO Yansheng. Regulation of Guiqiyimu Compound Preparation on Rumen Microbes and Short-chain Fatty Acids in Postpartum Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4461-4469. |
[8] | LIU Jing, ZHU Daoxian, LU Jinye, ZHANG Yiduo, LU Wei, LU Jiang. Alteration of Short-Chain Fatty Acids Produced by Gut Microflora in Dogs with Chronic Renal Failure and Its Effect on Renal Function [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2334-2343. |
[9] | ZHANG Yue-bo, YAN Hua, WANG Li-gang, ZHAO Fu-ping, HOU Xin-hua, LIU Xin, GAO Hong-mei, ZHANG Long-chao, WANG Li-xian. RNA Editing and Its Detection Methods in Mammalian [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(11): 2299-2309. |
[10] | TI Jin-feng,LI Zhi-jie,LI Xiu-li,ZHANG Min-min,ZHANG Yuan-yuan,DIAO You-xiang. Expression of NS1 Protein of Tembusu Virus and Development of Indirect ELISA Assay [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(5): 970-977. |
[11] | LIU Hua-nan, CAO Wei-jun, YANG Fan, ZHENG Hai-xue. Research Progress of Torovirus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(8): 1173-1181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||