Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (12): 5398-5411.doi: 10.11843/j.issn.0366-6964.2024.12.007
• Review • Previous Articles Next Articles
LÜ Daiyue1,2(), CHEN Yanfei1, ZHAI Tianshu1, CAO Shengbo2, XUE Qinghong1,*(
)
Received:
2024-01-25
Online:
2024-12-23
Published:
2024-12-27
Contact:
XUE Qinghong
E-mail:2541931135@qq.com;732574709@qq.com
CLC Number:
LÜ Daiyue, CHEN Yanfei, ZHAI Tianshu, CAO Shengbo, XUE Qinghong. Research Progress and Application of Emerging Virus Detection Methods and Sequencing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5398-5411.
Table 1
Advantages and disadvantages of molecular biology detection methods for emerging viruses and their applications"
方法 Method | 主要原理 Main principles | 优、缺点 Advantage, disadvantage | 主要应用 Main application |
变性寡核苷酸引物PCR DOP-PCR | 部分随机引物法 | 对模板质量要求低,操作简单。但扩增产物平均长度较短,基因组覆盖率低 | 可鉴定未知DNA、RNA 病毒序列 |
滚环复制技术 RCA | 自然滚环复制的简化衍生 | 高灵敏度,高序列特异性,无需制定引物,高通量,操作方便。但合成费用较高,信号检测时存在背景干扰问题 | 可鉴定未知环状DNA 病毒序列 |
多重置换扩增技术 MDA | φ29 DNA聚合酶的链置换机制 | 技术操作简单、产物质量稳定。但对模板质量要求高 | 可鉴定未知线状DNA 病毒序列 |
代表性差异分析 RDA | 基因组的消减杂交 | 具有较高的灵敏度,无需文库的筛选,可重复性好。但操作过程相对繁琐复杂,实验周期长,会出现假阳性结果 | 可鉴定未知DNA、RNA 病毒序列 |
序列非依赖的单引物扩增 SISPA | 平末端连接扩增 | 不依赖于组织培养,可用于不同类型的临床样本。 但样品中存在其他污染序列,而且价格昂贵 | 可鉴定未知DNA、RNA 病毒序列 |
cDNA扩增片段长度多态性 VIDISCA | 一种SISPA衍生方法 | 灵敏度较高 | 可鉴定未知DNA、RNA 病毒序列 |
随机引物PCR AP-PCR | 随机引物法 | 对模板DNA的纯度要求不高;技术简单;灵敏度高,可提供丰富的多态性但随机引物PCR技术易受外界因素的影响,且扩增产物的稳定性较低 | 可鉴定未知DNA、RNA 病毒序列 |
表达cDNA文库 cDNA library | 特异性表位筛选与鉴定 | 耗时长且阳性率低 | 可鉴定未知RNA 病毒序列 |
1 |
MARRA M A , JONES S J M , ASTELL C R , et al. The genome sequence of the SARS-associated coronavirus[J]. Science, 2003, 300 (5624): 1399- 1404.
doi: 10.1126/science.1085953 |
2 |
HANDELSMAN J , RONDON M R , BRADY S F , et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chem Biol, 1998, 5 (10): R245- R249.
doi: 10.1016/S1074-5521(98)90108-9 |
3 |
EDWARDS R A , ROHWER F . Viral metagenomics[J]. Nat Rev Microbiol, 2005, 3 (6): 504- 510.
doi: 10.1038/nrmicro1163 |
4 |
THURBER R V , HAYNES M , BREITBART M , et al. Laboratory procedures to generate viral metagenomes[J]. Nat Protoc, 2009, 4 (4): 470- 483.
doi: 10.1038/nprot.2009.10 |
5 | 张雨青, 曹佳宝, 赵娜, 等. 病毒组研究: 微生物组研究新热点[J]. 生物工程学报, 2020, 36 (12): 2566- 2581. |
ZHANG Y Q , CAO J B , ZHAO N , et al. Virome: the next hotspot in microbiome research[J]. Chinese Journal of Biotechnology, 2020, 36 (12): 2566- 2581. | |
6 |
CONCEIÇÃO-NETO N , ZELLER M , LEFRōRE H , et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis[J]. Scientific Reports, 2015, 5, 16532.
doi: 10.1038/srep16532 |
7 | KHAN A S , NG S H S , VANDEPUTTE O , et al. A multicenter study to evaluate the performance of high-throughput sequencing for virus detection[J]. mSphere, 2017, 2 (5): e00307- 17. |
8 |
NG S H , BRAXTON C , ELOIT M , et al. Current perspectives on high-throughput sequencing (HTS) for adventitious virus detection: upstream sample processing and library preparation[J]. Viruses, 2018, 10 (10): 566.
doi: 10.3390/v10100566 |
9 |
TELENIUS H , PONDER B A J , TUNNACLIFFE A , et al. Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes[J]. Genes Chromosomes Cancer, 1992, 4 (3): 257- 263.
doi: 10.1002/gcc.2870040311 |
10 |
TELENIUS H K , CARTER N P , BEBB C E , et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer[J]. Genomics, 1992, 13 (3): 718- 725.
doi: 10.1016/0888-7543(92)90147-K |
11 |
NANDA S , JAYAN G , VOULGAROPOULOU F , et al. Universal virus detection by degenerate-oligonucleotide primed polymerase chain reaction of purified viral nucleic acids[J]. J Virol Methods, 2008, 152 (1-2): 18- 24.
doi: 10.1016/j.jviromet.2008.06.007 |
12 |
UHLENHAUT C , COHEN J I , PAVLETIC S , et al. Use of a novel virus detection assay to identify coronavirus HKU1 in the lungs of a hematopoietic stem cell transplant recipient with fatal pneumonia[J]. Transpl Infect Dis, 2012, 14 (1): 79- 85.
doi: 10.1111/j.1399-3062.2011.00657.x |
13 |
UHLENHAUT C , COHEN J I , FEDORKO D , et al. Use of a universal virus detection assay to identify human metapneumovirus in a hematopoietic stem cell transplant recipient with pneumonia of unknown origin[J]. J Clin Virol, 2009, 44 (4): 337- 339.
doi: 10.1016/j.jcv.2009.01.011 |
14 |
MCCLENAHAN S D , SCHERBA G , BORST L , et al. Discovery of a bovine enterovirus in alpaca[J]. PLoS One, 2013, 8 (8): e68777.
doi: 10.1371/journal.pone.0068777 |
15 |
ARTHUR J L , HIGGINS G D , DAVIDSON G P , et al. A novel bocavirus associated with acute gastroenteritis in Australian children[J]. PLoS Pathog, 2009, 5 (4): e1000391.
doi: 10.1371/journal.ppat.1000391 |
16 | 陈玉静. 未知RNA病毒性病原体序列非依赖性单引物扩增技术的建立及应用[D]. 石家庄: 河北医科大学, 2016. |
CHEN Y J. Establishment and application of sequence independent single primer amplification technology of unknown RNA viral pathogens[D]. Shijiazhuang: Hebei Medical University, 2016. (in Chinese) | |
17 |
BANÉR J , NILSSON M , MENDEL-HARTVIG M , et al. Signal amplification of padlock probes by rolling circle replication[J]. Nucleic Acids Res, 1998, 26 (22): 5073- 5078.
doi: 10.1093/nar/26.22.5073 |
18 |
MOHSEN M G , KOOL E T . The discovery of rolling circle amplification and rolling circle transcription[J]. Acc Chem Res, 2016, 49 (11): 2540- 2550.
doi: 10.1021/acs.accounts.6b00417 |
19 |
ALI M M , LI F , ZHANG Z Q , et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine[J]. Chem Soc Rev, 2014, 43 (10): 3324- 3341.
doi: 10.1039/c3cs60439j |
20 |
JOHNE R , MÜLLER H , RECTOR A , et al. Rolling-circle amplification of viral DNA genomes using phi29 polymerase[J]. Trends Microbiol, 2009, 17 (5): 205- 211.
doi: 10.1016/j.tim.2009.02.004 |
21 | 张俊, 曾照芳. 滚环扩增技术的原理及其应用的研究[J]. 生物信息学, 2012, 10 (1): 12- 14. |
ZHANG J , ZENG Z F . Principle of rolling circle amplification and its discussion in application[J]. Chinese Journal of Bioinformatics, 2012, 10 (1): 12- 14. | |
22 |
LIZARDI P M , HUANG X H , ZHU Z R , et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nat Genet, 1998, 19 (3): 225- 232.
doi: 10.1038/898 |
23 |
DEAN F B , NELSON J R , GIESLER T L , et al. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome Res, 2001, 11 (6): 1095- 1099.
doi: 10.1101/gr.180501 |
24 |
LI J J , PAN Y Q , DENG Q J , et al. Identification and characterization of eleven novel human gamma-papillomavirus isolates from healthy skin, found at low frequency in a normal population[J]. PLoS One, 2013, 8 (10): e77116.
doi: 10.1371/journal.pone.0077116 |
25 | NIEL C , DINIZ-MENDES L , DEVALLE S . Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup[J]. J Gen Virol, 2005, 86 (Pt 5): 1343- 1347. |
26 |
DA SILVA F R C , CIBULSKI S P , DAUDT C , et al. Novel bovine papillomavirus type discovered by rolling-circle amplification coupled with next-generation sequencing[J]. PLoS One, 2016, 11 (9): e0162345.
doi: 10.1371/journal.pone.0162345 |
27 |
DEAN F B , HONSONO S , FANG L H , et al. Comprehensive human genome amplification using multiple displacement amplification[J]. Proc Natl Acad Sci U S A, 2002, 99 (8): 5261- 5266.
doi: 10.1073/pnas.082089499 |
28 | 杨华昕, 丁梅, 王保捷, 等. 多重置换扩增技术及其法医学应用展望[J]. 中国法医学杂志, 2012, 27 (5): 379- 382. |
YANG H X , DING M , WANG B J , et al. Multiple displacement amplification and its application prospect in forensic science[J]. Chinese Journal of Forensic Medicine, 2012, 27 (5): 379- 382. | |
29 |
ANGLY F E , FELTS B , BREITBART M , et al. The marine viromes of four oceanic regions[J]. PLoS Biol, 2006, 4 (11): e368.
doi: 10.1371/journal.pbio.0040368 |
30 |
WILLNER D , FURLAN M , HAYNES M , et al. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals[J]. PLoS One, 2009, 4 (10): e7370.
doi: 10.1371/journal.pone.0007370 |
31 |
NG T F F , MANIRE C , BORROWMAN K , et al. Discovery of a novel single-stranded DNA virus from a sea turtle fibropapilloma by using viral metagenomics[J]. J Virol, 2009, 83 (6): 2500- 2509.
doi: 10.1128/JVI.01946-08 |
32 |
SUN Y , QU Y G , YAN X M , et al. Comprehensive evaluation of RNA and DNA viromic methods based on species richness and abundance analyses using marmot rectal samples[J]. mSystems, 2022, 7 (4): e0043022.
doi: 10.1128/msystems.00430-22 |
33 |
KIM K H , CHANG H W , NAM Y D , et al. Amplification of uncultured single-stranded DNA viruses from rice paddy soil[J]. Appl Environ Microbiol, 2008, 74 (19): 5975- 5985.
doi: 10.1128/AEM.01275-08 |
34 |
PARRAS-MOLTÓ M , RODRÍGUEZ-GALET A , SUÁREZ-RODRÍGUEZ P , et al. Evaluation of bias induced by viral enrichment and random amplification protocols in metagenomic surveys of saliva DNA viruses[J]. Microbiome, 2018, 6 (1): 119.
doi: 10.1186/s40168-018-0507-3 |
35 |
RHEE M , LIGHT Y K , MEAGHER R J , et al. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples[J]. PLoS One, 2016, 11 (5): e0153699.
doi: 10.1371/journal.pone.0153699 |
36 |
DIREITO S O L , ZAURA E , LITTLE M , et al. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification[J]. Environ Microbiol, 2014, 16 (3): 643- 657.
doi: 10.1111/1462-2920.12365 |
37 |
PICHER Á J , BUDEUS B , WAFZIG O , et al. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol[J]. Nat Commun, 2016, 7, 13296.
doi: 10.1038/ncomms13296 |
38 |
LISITSYN N , LISITSYN N , WIGLER M . Cloning the differences between two complex genomes[J]. Science, 1993, 259 (5097): 946- 951.
doi: 10.1126/science.8438152 |
39 |
HUBANK M , SCHATZ D G . Identifying differences in mRNA expression by representational difference analysis of cDNA[J]. Nucleic Acids Res, 1994, 22 (25): 5640- 5648.
doi: 10.1093/nar/22.25.5640 |
40 |
BRATANICH A C , ELLIS J A , BLANCHETOT A . Representational differential analysis detects amplification of satellite sequences in postweaning multisystemic wasting syndrome of pigs[J]. J Vet Diagn Invest, 2000, 12 (4): 328- 331.
doi: 10.1177/104063870001200405 |
41 |
SIMONS J N , PILOT-MATIAS T J , LEARY T P , et al. Identification of two flavivirus-like genomes in the GB hepatitis agent[J]. Proc Natl Acad Sci U S A, 1995, 92 (8): 3401- 3405.
doi: 10.1073/pnas.92.8.3401 |
42 |
NISHIZAWA T , OKAMOTO H , KONISHI K , et al. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology[J]. Biochem Biophys Res Commun, 1997, 241 (1): 92- 97.
doi: 10.1006/bbrc.1997.7765 |
43 | 沈倍奋. 分子文库[M]. 北京: 科学出版社, 2001. |
SHEN B F . Molecular library[M]. Beijing: Science Press, 2001. | |
44 |
ALLANDER T , EMERSON S U , ENGLE R E , et al. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species[J]. Proc Natl Acad Sci U S A, 2001, 98 (20): 11609- 11614.
doi: 10.1073/pnas.211424698 |
45 |
JONES M S , KAPOOR A , LUKASHOV V V , et al. New DNA viruses identified in patients with acute viral infection syndrome[J]. J Virol, 2005, 79 (13): 8230- 8236.
doi: 10.1128/JVI.79.13.8230-8236.2005 |
46 |
REYES G R , KIM J P . Sequence-independent, single-primer amplification (SISPA) of complex DNA populations[J]. Mol Cell Probes, 1991, 5 (6): 473- 481.
doi: 10.1016/S0890-8508(05)80020-9 |
47 |
DJIKENG A , HALPIN R , KUZMICKAS R , et al. Viral genome sequencing by random priming methods[J]. BMC Genomics, 2008, 9, 5.
doi: 10.1186/1471-2164-9-5 |
48 | BIAGINI P , UCH R , BELHOUCHET M , et al. Circular genomes related to anelloviruses identified in human and animal samples by using a combined rolling-circle amplification/sequence-independent single primer amplification approach[J]. J Gen Virol, 2007, 88 (Pt 10): 2696- 2701. |
49 |
VAN DER HOEK L , PYRC K , JEBBINK M F , et al. Identification of a new human coronavirus[J]. Nat Med, 2004, 10 (4): 368- 373.
doi: 10.1038/nm1024 |
50 |
SRIDHAR S , TO K K W , CHAN J F W , et al. A systematic approach to novel virus discovery in emerging infectious disease outbreaks[J]. J Mol Diagn, 2015, 17 (3): 230- 241.
doi: 10.1016/j.jmoldx.2014.12.002 |
51 | PYRC K, JEBBINK M F, BERKHOUT B, et al. Detection of new viruses by VIDISCA: virus discovery based on cDNA-amplified fragment length polymorphism[M]//CAVANAGH D. SARS- and Other Coronaviruses. Totowa: Humana Press, 2008: 73-89. |
52 | VAN TAN L , VAN DOORN H R , VAN DER HOEK L , et al. Random PCR and ultracentrifugation increases sensitivity and throughput of VIDISCA for screening of pathogens in clinical specimens[J]. J Infect Dev Ctries, 2011, 5 (2): 142- 148. |
53 |
EDRIDGE A W D , DEIJS M , NAMAZZI R , et al. Novel orthobunyavirus identified in the cerebrospinal fluid of a Ugandan child with severe encephalopathy[J]. Clin Infect Dis, 2019, 68 (1): 139- 142.
doi: 10.1093/cid/ciy486 |
54 |
EDRIDGE A W D , ABD-ELFARAG G , DEIJS M , et al. Divergent rhabdovirus discovered in a patient with new-onset nodding syndrome[J]. Viruses, 2022, 14 (2): 210.
doi: 10.3390/v14020210 |
55 |
CANUTI M , EIS-HUEBINGER A M , DEIJS M , et al. Two novel parvoviruses in frugivorous New and Old World bats[J]. PLoS One, 2011, 6 (12): e29140.
doi: 10.1371/journal.pone.0029140 |
56 |
CANUTI M , WILLIAMS C V , SAGAN S M , et al. Virus discovery reveals frequent infection by diverse novel members of the Flaviviridae in wild lemurs[J]. Arch Virol, 2019, 164 (2): 509- 522.
doi: 10.1007/s00705-018-4099-9 |
57 |
WELSH J , MCCLELLAND M . Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res, 1990, 18 (24): 7213- 7218.
doi: 10.1093/nar/18.24.7213 |
58 |
WILLIAMS J G K , KUBELIK A R , LIVAK K J , et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18 (22): 6531- 6535.
doi: 10.1093/nar/18.22.6531 |
59 |
ALLANDER T , TAMMI M T , ERIKSSON M , et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples[J]. Proc Natl Acad Sci U S A, 2005, 102 (36): 12891- 12896.
doi: 10.1073/pnas.0504666102 |
60 |
ALLANDER T , ANDREASSON K , GUPTA S , et al. Identification of a third human polyomavirus[J]. J Virol, 2007, 81 (8): 4130- 4136.
doi: 10.1128/JVI.00028-07 |
61 |
FOUCHIER R A M , HARTWIG N G , BESTEBROER T M , et al. A previously undescribed coronavirus associated with respiratory disease in humans[J]. Proc Natl Acad Sci U S A, 2004, 101 (16): 6212- 6216.
doi: 10.1073/pnas.0400762101 |
62 |
STANG A , KORN K , WILDNER O , et al. Characterization of virus isolates by particle-associated nucleic acid PCR[J]. J Clin Microbiol, 2005, 43 (2): 716- 720.
doi: 10.1128/JCM.43.2.716-720.2005 |
63 |
CHOO Q L , KUO G , WEINER A J , et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome[J]. Science, 1989, 244 (4902): 359- 362.
doi: 10.1126/science.2523562 |
64 | 熊倩灵. 基于Nanopore平台的病毒快速识别及全基因组测序研究[D]. 广州: 南方医科大学, 2022. |
XIONG Q L. Rapid identification and whole-genome sequencing of viruses on Nanopore sequencing platform[D]. Guangzhou: Southern Medical University, 2022. (in Chinese) | |
65 |
MARGULIES M , EGHOLM M , ALTMAN W E , et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437 (7057): 376- 380.
doi: 10.1038/nature03959 |
66 |
CELESTI F , CELESTI A , WAN J F , et al. Why deep learning is changing the way to approach NGS data processing: a review[J]. IEEE Rev Biomed Eng, 2018, 11, 68- 76.
doi: 10.1109/RBME.2018.2825987 |
67 |
QUAIL M A , SMITH M , COUPLAND P , et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[J]. BMC Genomics, 2012, 13, 341.
doi: 10.1186/1471-2164-13-341 |
68 |
LANG J D , ZHU R R , SUN X , et al. Evaluation of the MGISEQ-2000 sequencing platform for illumina target capture sequencing libraries[J]. Front Genet, 2021, 12, 730519.
doi: 10.3389/fgene.2021.730519 |
69 |
JEON S A , PARK J L , PARK S J , et al. Comparison between MGI and Illumina sequencing platforms for whole genome sequencing[J]. Genes Genomics, 2021, 43 (7): 713- 724.
doi: 10.1007/s13258-021-01096-x |
70 |
MCCLENAHAN S D , KRAUSE P R . Towards dynamic monitoring of cell cultures using high throughput sequencing[J]. Vaccine, 2019, 37 (7): 1001- 1005.
doi: 10.1016/j.vaccine.2018.12.019 |
71 |
TOWNER J S , SEALY T K , KHRISTOVA M L , et al. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda[J]. PLoS Pathog, 2008, 4 (11): e1000212.
doi: 10.1371/journal.ppat.1000212 |
72 |
HOFFMANN B , SCHEUCH M , HÖPER D , et al. Novel orthobunyavirus in Cattle, Europe, 2011[J]. Emerg Infect Dis, 2012, 18 (3): 469- 472.
doi: 10.3201/eid1803.111905 |
73 |
STREMLAU M H , ANDERSEN K G , FOLARIN O A , et al. Discovery of novel rhabdoviruses in the blood of healthy individuals from West Africa[J]. PLoS Negl Trop Dis, 2015, 9 (3): e0003631.
doi: 10.1371/journal.pntd.0003631 |
74 |
LU H Y , GIORDANO F , NING Z M . Oxford nanopore MinION sequencing and genome assembly[J]. Genomics Proteomics Bioinformatics, 2016, 14 (5): 265- 279.
doi: 10.1016/j.gpb.2016.05.004 |
75 | 张皓博, 樊晓旭, 刘蒙达, 等. 纳米孔测序技术在疾病检测中的研究进展[J]. 中国动物检疫, 2021, 38 (6): 82- 89. |
ZHANG H B , FAN X X , LIU M D , et al. Research progress on nanopore sequencing technology in disease detection[J]. China Animal Health Inspection, 2021, 38 (6): 82- 89. | |
76 | 闫晓敏, 任照文, 涂长春, 等. Nanopore快速测序诊断饲养野猪非洲猪瘟疫情[J]. 中国动物传染病学报, 2020, 28 (4): 79- 84. |
YAN X M , REN Z W , TU C C , et al. Rapid diagnosis of African swine fever in farmed wild boar using Nanopore sequencing[J]. Chinese Journal of Animal Infectious Diseases, 2020, 28 (4): 79- 84. | |
77 |
ZHU N , ZHANG D Y , WANG W L , et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382 (8): 727- 733.
doi: 10.1056/NEJMoa2001017 |
78 |
CHAN W M , IP J D , CHU A W H , et al. Identification of nsp1 gene as the target of SARS-CoV-2 real-time RT-PCR using nanopore whole-genome sequencing[J]. J Med Virol, 2020, 92 (11): 2725- 2734.
doi: 10.1002/jmv.26140 |
79 |
WANG M , FU A S , HU B , et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses[J]. Small, 2021, 17 (32): 2104078.
doi: 10.1002/smll.202104078 |
80 |
SHEPHERD B A , TANJIL M R E , JEONG Y , et al. Ångström- and nano-scale pore-based nucleic acid sequencing of current and emergent pathogens[J]. MRS Adv, 2020, 5 (56): 2889- 2906.
doi: 10.1557/adv.2020.402 |
81 |
QUICK J , GRUBAUGH N D , PULLAN S T , et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples[J]. Nat Protoc, 2017, 12 (6): 1261- 1276.
doi: 10.1038/nprot.2017.066 |
82 | HOENEN T . Sequencing of ebola virus genomes using nanopore technology[J]. Bio Protoc, 2016, 6 (21): e1998. |
83 |
VANDENBOGAERT M , KWASIBORSKI A , GONOFIO E , et al. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic[J]. Sci Rep, 2022, 12 (1): 10768.
doi: 10.1038/s41598-022-15073-1 |
84 | 庄子, 孟雨桐, 刘润旸, 等. 纳米孔测序技术及其在病原学诊断中的应用进展[J]. 江苏大学学报(医学版), 2023, 33 (6): 502- 508. |
ZHUANG Z , MENG Y T , LIU R Y , et al. Nanopore sequencing technology and its application in pathogenetic diagnosis[J]. Journal of Jiangsu University (Medicine Edition), 2023, 33 (6): 502- 508. | |
85 |
GALLARDO C M , WANG S Y , MONTIEL-GARCIA D J , et al. MrHAMER yields highly accurate single molecule viral sequences enabling analysis of intra-host evolution[J]. Nucleic Acids Res, 2021, 49 (12): e70.
doi: 10.1093/nar/gkab231 |
86 | SARCHESE V , FRUCI P , PALOMBIERI A , et al. Molecular identification and characterization of a genotype 3 hepatitis E virus (HEV) strain detected in a wolf faecal sample, Italy[J]. Animals (Basel), 2021, 11 (12): 3465. |
87 |
BRINKMANN A , UDDIN S , KRAUSE E , et al. Utility of a sequence-independent, single-primer-amplification (SISPA) and nanopore sequencing approach for detection and characterization of tick-borne viral pathogens[J]. Viruses, 2021, 13 (2): 203.
doi: 10.3390/v13020203 |
88 |
VAN DER HEIJDEN M , DE VRIES M , VAN STEENBEEK F G , et al. Sequence-independent VIDISCA-454 technique to discover new viruses in canine livers[J]. J Virol Methods, 2012, 185 (1): 152- 155.
doi: 10.1016/j.jviromet.2012.05.019 |
89 |
PESERICO A , MARCACCI M , MALATESTA D , et al. Diagnosis and characterization of canine distemper virus through sequencing by MinION nanopore technology[J]. Sci Rep, 2019, 9 (1): 1714.
doi: 10.1038/s41598-018-37497-4 |
90 |
WOLLANTS E , MAES P , MERINO M , et al. First genomic characterization of a Belgian Enterovirus C104 using sequence-independent Nanopore sequencing[J]. Infect Genet Evol, 2020, 81, 104267.
doi: 10.1016/j.meegid.2020.104267 |
91 |
TOH X , WANG Y F , RAJAPAKSE M P , et al. Use of nanopore sequencing to characterize African horse sickness virus (AHSV) from the African horse sickness outbreak in thailand in 2020[J]. Transbound Emerg Dis, 2022, 69 (3): 1010- 1019.
doi: 10.1111/tbed.14056 |
[1] | Meila NA, Kenan LI, Haidong DU, Wenliang GUO, Renhua NA. Study on the Differences of Fungal Diversity in Rumen and Feces of Inner Mongolia Cashmere Goats at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3526-3540. |
[2] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. |
[3] | XIAN Ge, LIU Huimin, WANG Jiaqi, ZHENG Nan. Structures, Functions and Detection Methods of A1 and A2 β-casein in Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5440-5451. |
[4] | WU Yicheng, RAN Tao, ZHOU Chuanshe, TAN Zhiliang. Evaluation of the Viral Community Composition in Goat Rumen Fluid, Based on Metagenomic Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2932-2941. |
[5] | LI Zhaoyan, GAO Jiang, GUO Shihui, ZHAO Ruqian, MA Wenqiang. Advances in Detection Methods and Control Solutions for Feline Allergens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2272-2279. |
[6] | LI Ben, GUO Fuqiang, WANG Weiwei, JIN Ningyi, JIN Qiushi, MI Zhiqiang, LI Chang, WANG Maopeng. A Case Report of Feline Infectious Peritonitis based on High-throughput Sequencing Diagnosis and Small-molecule Nucleoside Analogues Treatment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 200-208. |
[7] | WANG Hailong, WANG Qiao, XING Siyuan, WANG Jie, LI Qinghe, ZHENG Maiqing, CUI Huanxian, LIU Ranran, ZHAO Guiping, WEN Jie. Evaluating Beijing You Chickens Conservation Status by Phenotype and Genome Information [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2406-2415. |
[8] | ZHANG Yue-bo, YAN Hua, WANG Li-gang, ZHAO Fu-ping, HOU Xin-hua, LIU Xin, GAO Hong-mei, ZHANG Long-chao, WANG Li-xian. RNA Editing and Its Detection Methods in Mammalian [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(11): 2299-2309. |
[9] | TI Jin-feng,LI Zhi-jie,LI Xiu-li,ZHANG Min-min,ZHANG Yuan-yuan,DIAO You-xiang. Expression of NS1 Protein of Tembusu Virus and Development of Indirect ELISA Assay [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(5): 970-977. |
[10] | LIU Hua-nan, CAO Wei-jun, YANG Fan, ZHENG Hai-xue. Research Progress of Torovirus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(8): 1173-1181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||