[1] ZHEN H M, HU Y M, XIONG K, et al. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2024, 41(10):1344-1359. [2] QU Z, REN X F, DU Z L, et al. Fusarium mycotoxins: The major food contaminants [J]. mLife, 2024, 3(2):176-206. [3] CAI P R, LIU S Q, TU Y, et al. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone [J]. Sci Total Environ, 2024, 911:168648. [4] PAN P P, YING Y F, MA F F, et al. Zearalenone disrupts the placental function of rats: a possible mechanism causing intrauterine growth restriction [J]. Food Chem Toxicol, 2020, 145:111698. [5] MATSUDA F, INOUE N, MANABE N, et al. Follicular growth and atresia in mammalian ovaries: Regulation by survival and death of granulosa cells [J]. J Reprod Dev, 2012, 58:44-50. [6] WANG X, JIANG Y L, WANG Z L, et al. Mechanism of programmed cell death in follicular atresia [J]. Sheng Li Xue Bao, 2023, 75(1): 82-90. [7] LIU Q X, WANG L L, AN L, et al. Vitamin E mitigates apoptosis in ovarian granulosa cells by inhibiting zearalenone-induced activation of the PERK/eIF-2α/ATF4/Chop signaling pathway [J]. J Agric Food Chem, 2024, 72(51):28390-28399. [8] SUN N, HASEEB A, SUN P P, et al. Scutellarin targets Wnt5a against zearalenone-induced apoptosis in mouse granulosa cells in vitro and in vivo [J]. J Hazard Mater, 2024, 464:132917. [9] YANG F X, LI L, CHEN K L, et al. Melatonin alleviates β-zearalenol and HT-2 toxin-induced apoptosis and oxidative stress in bovine ovarian granulosa cells [J]. Environ Toxicol Pharmacol, 2019, 68:52-60. [10] SINGH A K, SINGLA R K, PANDEY A K. Chlorogenic acid: a dietary phenolic acid with promising pharmacotherapeutic potential [J]. Curr Med Chem, 2023, 30(34): 3905-3926. [11] LU H, TIAN Z, CUI Y, et al. Chlorogenic acid: a comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions [J]. Compr Rev Food Sci Food Saf, 2020,19(6):3130-3158. [12] RIBEIRO J, SILVA V, IGREJAS G, et al. Phenolic compounds from pyrus communis residues: mechanisms of antibacterial action and therapeutic applications [J]. Antibiotics (Basel), 2025, 14(3):280. [13] YU Y, ZENG F, HAN P, et al. Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota [J]. Int J Food Sci Nutr, 2024, 75(4):369-384. [14] YI Y Y, WAN S X, HOU Y X, et al. Chlorogenic acid rescues zearalenone induced injury to mouse ovarian granulosa cells [J]. Ecotoxicol Environ Saf, 2020, 194: 110401. [15] LV Q X, XU W J, YANG F, et al. Reproductive toxicity of zearalenone and its molecular mechanisms: a review [J]. Molecules, 2025, 30(3): 505. [16] BAI J, ZHOU Y S, LUO X, et al. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals [J]. Compr Rev Food Sci Food Saf, 2022, 21(4):3326-3345. [17] HUANG Q, SHAN Q, MA F T, et al. Chlorogenic acid mitigates heat stress-induced oxidative damage in bovine mammary epithelial cells by inhibiting NF-κB-mediated NLRP3 inflammasome activation via upregulating the Nrf2 signaling pathway [J]. Int J Biol Macromol, 2025, 301:140133. [18] 张绍萱.绿原酸缓解热应激诱发初情期前猪睾丸氧化损伤的多组学研究 [D].长春:吉林大学, 2022. ZHANG S X. Multi omics study on the alleviation of heat stress-induced oxidative damage in prepubertal pig testes by chlorogenic acid [D]. Changchun: Jilin University, 2022. (in Chinese) [19] LIN C H, JIANG W P, ITOKAZU N, et al. Chlorogenic acid attenuates 5-fluorouracil-induced intestinal mucositis in mice through SIRT1 signaling-mediated oxidative stress and inflammatory pathways [J]. Biomed Pharmacother, 2025, 186:117982. [20] 赖希诺. 绿原酸对DON诱导的猪肺泡巨噬细胞铁死亡的影响 [D]. 成都: 四川农业大学, 2024. LAI X N. The effect of chlorogenic acid on DON induced ferroptosis of porcine alveolar macrophages [D]. Chengdu: Sichuan Agricultural University, 2024. (in Chinese) [21] YANG Y X, LI X Y, ZHANG T, et al. RIP kinases and necroptosis in aging and aging-related diseases [J]. Life Med, 2022, 1(1):2-20. [22] YAO K H, SHI Z H, ZHAO F Y, et al. RIPK1 in necroptosis and recent progress in related pharmaceutics [J]. Front Immunol, 2025, 16:1480027. [23] JU E, PARK K A, SHEN H M, et al. The resurrection of RIP kinase 1 as an early cell death checkpoint regulator-a potential target for therapy in the necroptosis era [J]. Exp Mol Med, 2022, 54(9):1401-1411. [24] CLUCAS J, MEIER P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death [J]. Nat Rev Mol Cell Biol, 2023, 24(11):835-852. [25] CHEN S, XU T, XU A, et al. Quercetin alleviates zearalenone-induced apoptosis and necroptosis of porcine renal epithelial cells by inhibiting CaSR/CaMKII signaling pathway [J]. Food Chem Toxicol, 2023, 182:114184. [26] YI Y Y, HAO Z L, SUN P P, et al. Study on the mechanism of scutellarin's protective effect against ZEA-induced mouse ovarian granulosa cells injury [J]. Food Chem Toxicol, 2022, 170:113481. [27] VARFOLOMEEV E, VUCIC D. RIP1 post-translational modifications [J]. Biochem J, 2022,479(9):929-951. [28] 董灵军,吴 明. RIP1泛素化修饰调控程序性坏死的研究进展 [J]. 生命的化学, 2021, 41(9):1900-1907. DONG L J, WU M. Research progress on RIP1 ubiquitination modification regulating programmed necrosis [J]. Chemistry of Life, 2021, 41 (9): 1900-1907. (in Chinese) [29] LIU X Y, TANG A L, CHEN J, et al. RIPK1 in the inflammatory response and sepsis: recent advances, drug discovery and beyond [J]. Front Immunol, 2023, 14:1332633. [30] YIN J, SCHOEFFLER A J, WICKLIFFE K, et al. Structural insights into WD-Repeat 48 activation of ubiquitin-specific protease 46 [J]. Structure, 2015, 23(11):2043-2054. |