

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (12): 6060-6072.doi: 10.11843/j.issn.0366-6964.2025.12.011
• REVIEW • Previous Articles Next Articles
BAN Manman1,2, ZONG Rui1, TANG Jinmeng1, MA Yuchen1, DU Shuai1, YUAN Yixin1, LI Wentao3, DU Wenjuan1*, LI Yongtao1*
Received:2025-02-24
Published:2025-12-24
CLC Number:
BAN Manman, ZONG Rui, TANG Jinmeng, MA Yuchen, DU Shuai, YUAN Yixin, LI Wentao, DU Wenjuan, LI Yongtao. Research Progress on Functional Receptors and Host Entry Factors of Porcine Enteric Coronaviruses[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6060-6072.
| [1] ZHOU Z, QIU Y, GE X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order[J]. Anim Dis, 2021, 1(1):5. [2] HULSWIT R J, DE HAAN C A, BOSCH B J. Coronavirus spike protein and tropism changes[J]. Adv Virus Res, 2016, 96:29-57. [3] YUAN H W, WEN H L. Research progress on coronavirus S proteins and their receptors[J]. Arch Virol, 2021, 166(7):1811-1817. [4] KOONIN E V, DOLJA V V, KRUPOVIC M. The logic of virus evolution[J]. Cell Host Microbe, 2022, 30(7):917-929. [5] KESHEH M M, HOSSEINI P, SOLTANI S, et al. An overview on the seven pathogenic human coronaviruses[J]. Rev Med Virol, 2022, 32(2):e2282. [6] LIN C N, CHAN K R, OOI E E, et al. Animal coronavirus diseases: Parallels with COVID-19 in humans[J]. Viruses, 2021, 13(8):1507. [7] NOVA N. Cross-species transmission of coronaviruses in humans and domestic mammals, what are the ecological mechanisms driving transmission, spillover, and disease emergence? [J]. Front Public Health, 2021, 9:717941. [8] RAJCÁNI J. Molecular mechanisms of virus spread and virion components as tools of virulence. A review[J]. Acta Microbiol Immunol Hung, 2003, 50(4):407-431. [9] LI W, HULSWIT R J G, KENNEY S P, et al. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility[J]. Proc Natl Acad Sci U S A, 2018, 115(22):E5135-E5143. [10] LI W, MOORE M J, VASILIEVA N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426(6965): 450-454. [11] RAJ V S, MOU H, SMITS S L, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC[J]. Nature, 2013, 495(7440): 251-254. [12] ZHANG Y, SHANG L, ZHANG J, et al. An antibody-based proximity labeling map reveals mechanisms of SARS-CoV-2 inhibition of antiviral immunity[J]. Cell Chem Biol, 2022, 29(1):5-18. [13] WANG P. Expression cloning of functional receptor used by SARS coronavirus[J]. Biochem Biophys Res Commun, 2004, 315:439-444. [14] WANG P G, TANG D J, HUA Z, et al. Sunitinib reduces the infection of SARS-CoV, MERS-CoV and SARS-CoV-2 partially by inhibiting AP2M1 phosphorylation[J]. Cell Discov, 2020, 6: 71. [15] 王文静,李 素,肖书奇,等.基于CRISPR/Cas9技术的高通量筛选平台:发掘病毒复制相关宿主分子的新途径[J].微生物学报,2018,58(11):1897-1907. WANG W J, LI S, XIAO S Q, et al. High-throughput screening platform based on CRISPR/Cas9 technology: a new approach to discover host molecules related to virus replication[J]. Acta Microbiologica Sinica, 2018, 58(11): 1897-1907. (in Chinese) [16] ZHU S, ZHOU Y, WEI W. Genome-wide CRISPR/Cas9 screening for high-throughput functional genomics in human cells[J]. Methods Mol Biol, 2017, 1656:175-181. [17] HOFFMANN M, KLEINE-WEBER H, SCHROEDER S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181:271-280. [18] WEI J, ALFAJARO M M, DEWEIRDT P C, et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection[J]. Cell, 2021, 184(1):76-91. [19] DANILOSKI Z, JORDAN T X, WESSELS H H, et al. Identification of required host factors for SARS-CoV-2 infection in human cells[J]. Cell, 2021, 184(1):92-105. [20] SCHNEIDER W M, LUNA J M, HOFFMANN H H, et al. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks[J]. Cell, 2021, 184(1):120-132. [21] WANG R, SIMONEAU C R, KULSUPTRAKUL J, et al. Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses[J]. Cell, 2021, 184(1):106-119. [22] MILLET J K, JAIMES J A, WHITTAKER G R. Molecular diversity of coronavirus host cell entry receptors[J]. FEMS Microbiol Rev, 2021, 45(3): fuaa057. [23] EVEREST H, STEVENSON-LEGGETT P, BAILEY D, et al. Known cellular and receptor interactions of animal and human coronaviruses: A review[J]. Viruses. 2022;14(2):351. [24] LI W, SUI J, HUANG I C, et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2[J]. Virology, 2007, 367(2):367-374. [25] SCHWEGMANN-WESSELS C, BAUER S, WINTER C, et al. The sialic acid binding activity of the S protein facilitates infection by porcine transmissible gastroenteritis coronavirus[J]. Virol J, 2011, 8:435. [26] LI W, VAN KUPPEVELD F J M, HE Q, et al. Cellular entry of the porcine epidemic diarrhea virus[J]. Virus Res, 2016, 226:117-127. [27] YANG Y L, WANG B, LI W, et al. Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofactors for regulation of swine acute diarrhea syndrome coronavirus entry[J]. J Virol, 2024, 98(4):e0013924. [28] SAUNDERS N, FERNANDEZ I, PLANCHAIS C, et al. TMPRSS2 is a functional receptor for human coronavirus HKU1[J]. Nature, 2023, 624(7990):207-214. [29] LAN J, GE J, YU J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807):215-220. [30] VAN DOREMALEN N, MIAZGOWICZ K L, MILNE-PRICE S, et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4[J]. J Virol, 2014, 88(16):9220-9232. [31] STEINER S, KRATZEL A, BARUT G T, et al. SARS-CoV-2 biology and host interactions[J]. Nat Rev Microbiol, 2024, 22(4):206-225. [32] WINTER C, HERRLER G, NEUMANN U. Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent[J]. Microbes Infect, 2008, 10(4):367-373. [33] AMBEPITIYA WICKRAMASINGHE I N, DE VRIES R P, WEERTS E A, et al. Novel receptor specificity of avian gammacoronaviruses that cause enteritis[J]. J Virol, 2015, 89(17):8783-8792. [34] JI W, PENG Q, FANG X, et al. Structures of a deltacoronavirus spike protein bound to porcine and human receptors[J]. Nat Commun, 2022, 13(1):1467. [35] BOLEY P A, ALHAMO M A, LOSSIE G, et al. Porcine deltacoronavirus infection and transmission in poultry, United States[J]. Emerg Infect Dis, 2020, 26(2):255-265. [36] DELMAS B, GELFI J, L'HARIDON R, et al. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV[J]. Nature, 1992, 357(6377): 417-419. [37] YEAGER C L, ASHMUN R A, WILLIAMS R K, et al. Human aminopeptidase N is a receptor for human coronavirus 229E[J]. Nature, 1992, 357(6377):420-422. [38] DELMAS B, GELFI J, SJÖSTRÖM H, et al. Further characterization of aminopeptidase-N as a receptor for coronaviruses[J]. Adv Exp Med Biol, 1993, 342: 293-:298. [39] TRESNAN D B, HOLMES K V. Feline aminopeptidase N is a receptor for all group I coronaviruses[J]. Adv Exp Med Biol, 1998, 440:69-75. [40] WANG B, LIU Y, JI C M, et al. Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry[J]. J Virol, 2018, 92(12):e00318-18. [41] ZHU X, LIU S, WANG X, et al. Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection[J]. Emerg Microbes Infect, 2018, 7(1):65. [42] LIANG Q Z, WANG B, JI C M, et al. Correction for Liang et al., "Chicken or porcine aminopeptidase N mediates cellular entry of pseudoviruses carrying spike glycoprotein from the avian deltacoronaviruses HKU11, HKU13, and HKU17"[J]. J Virol, 2024, 98(12):e0163124. [43] STOIAN A, ROWLAND R R R, PETROVAN V, et al. The use of cells from ANPEP knockout pigs to evaluate the role of aminopeptidase N (APN) as a receptor for porcine deltacoronavirus (PDCoV)[J]. Virology, 2020, 541:136-140. [44] YANG Y L, LIU J, WANG T Y, et al. Aminopeptidase N is an entry co-factor triggering porcine deltacoronavirus entry via an endocytotic pathway[J]. J Virol, 2021, 95(21):e0094421. [45] TIAN Y, SUN J, HOU X, et al. Cross-species recognition of two porcine coronaviruses to their cellular receptor aminopeptidase N of dogs and seven other species[J]. PLoS Pathog, 2025, 21(1):e1012836. [46] LI Y, ZHANG Z, YANG L, et al. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike[J]. iScience, 2020, 23(6):101160. [47] SHI J, HU S, WEI H, et al. Dipeptidyl peptidase 4 interacts with porcine coronavirus PHEV spikes and mediates host range expansion[J]. J Virol, 2024, 98(7):e0075324. [48] WASIK B R, BARNARD K N, PARRISH C R. Effects of sialic acid modifications on virus binding and infection[J]. Trends Microbiol, 2016, 24(12):991-1001. [49] PARK Y J, WALLS A C, WANG Z, et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors[J]. Nat Struct Mol Biol, 2019, 26(12):1151-1157. [50] LI W, HULSWIT R J G, WIDJAJA I, et al. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein[J]. Proc Natl Acad Sci U S A, 2017, 114(40):E8508-E8517. [51] YUAN Y, ZU S, ZHANG Y, et al. Porcine deltacoronavirus utilizes sialic acid as an attachment receptor and trypsin can influence the binding activity[J]. Viruses, 2021, 13(12):2442. [52] LAIRSON L L, HENRISSAT B, DAVIES G J, et al. Glycosyltransferases: structures, functions, and mechanisms[J]. Annu Rev Biochem, 2008, 77:521-555. [53] SCHAUER R. Sialic acids as regulators of molecular and cellular interactions[J]. Curr Opin Struct Biol, 2009, 19(5):507-514. [54] DOOSTKAM A, MALEKMAKAN L, HOSSEINPOUR A, et al. Sialic acid: an attractive biomarker with promising biomedical applications[J]. Asian Biomed (Res Rev News), 2022, 16(4):153-167. [55] LI X, ZHAO S, PENG G, et al. Genome-scale CRISPR screen identifies TRIM2 and SLC35A1 associated with porcine epidemic diarrhoea virus infection[J]. Int J Biol Macromol, 2023, 250:125962. [56] WANG X, JIN Q, XIAO W, et al. Genome-wide CRISPR/Cas9 screen reveals a role for SLC35A1 in the adsorption of porcine deltacoronavirus[J]. J Virol, 2022, 96(24):e0162622. [57] HAN J, PEREZ J T, CHEN C, et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication[J]. Cell Rep, 2018, 23(2):596-607. [58] LI B X, GE J W, LI Y J. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus[J]. Virology, 2007, 365(1):166-172. [59] LIU C, TANG J, MA Y, et al. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus[J]. J Virol, 2015, 89(11):6121-6125. [60] LI W, LUO R, HE Q, et al. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry[J]. Virus Res, 2017, 235:6-13. [61] JI C M, WANG B, ZHOU J, et al. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells[J]. Virology, 2018, 517:16-23. [62] LUO L, WANG S, ZHU L, et al. Aminopeptidase N-null neonatal piglets are protected from transmissible gastroenteritis virus but not porcine epidemic diarrhea virus[J]. Sci Rep, 2019, 9(1):13186. [63] ZHANG S, CAO Y, YANG Q. Transferrin receptor 1 levels at the cell surface influence the susceptibility of newborn piglets to PEDV infection[J]. PLoS Pathog, 2020, 16(7):e1008682. [64] FENG Z, FU Y, YANG S, et al. Siglec-15 is a putative receptor for porcine epidemic diarrhea virus infection[J]. Cell Mol Life Sci, 2025, 82(1):136. [65] 房元杰.基因组CRISPR敲除文库筛选PEDV复制所需的宿主因子[D]. 广州: 仲恺农业工程学院, 2023. FANG Y J. Screening of host factors required for PEDV replication using genome-wide CRISPR knockout library[D]. Guangzhou: Zhongkai University of Agriculture and Engineering, 2023. (in Chinese) [66] 张 雪.基于CRISPR/Cas9文库筛选PEDV复制相关基因及功能研究[D]. 石河子: 石河子大学, 2023. ZHANG X. Screening of PEDV replication-related genes based on CRISPR/Cas9 library and functional study[D]. Shihezi: Shihezi University, 2023. (in Chinese) [67] XU K, ZHOU Y, MU Y, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J]. Elife, 2020, 9:e57132. [68] JI Z, DONG H, JIAO R, et al. The TGEV membrane protein interacts with HSC70 to direct virus internalization through clathrin-mediated endocytosis[J]. J Virol, 2023, 97(4):e0012823. [69] HOFFMANN H H, SCHNEIDER W M, ROZEN-GAGNON K, et al. TMEM41B is a pan-flavivirus host factor[J]. Cell, 2021, 184(1):133-148. [70] SUN L, ZHAO C, FU Z, et al. Genome-scale CRISPR screen identifies TMEM41B as a multi-function host factor required for coronavirus replication[J]. PLoS Pathog, 2021, 17(12):e1010113. [71] FU Z, XIANG Y, FU Y, et al. DYRK1A is a multifunctional host factor that regulates coronavirus replication in a kinase-independent manner[J]. J Virol, 2024, 98(1):e0123923. [72] HU W, ZHANG S, SHEN Y, et al. Epidermal growth factor receptor is a co-factor for transmissible gastroenteritis virus entry[J]. Virology, 2018, 521:33-43. [73] ZHANG S, HU W, YUAN L, et al. Transferrin receptor 1 is a supplementary receptor that assists transmissible gastroenteritis virus entry into porcine intestinal epithelium[J]. Cell Commun Signal, 2018, 16(1):69. [74] JUNG K, HU H, SAIF L J. Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis[J]. Virus Res, 2016, 226: 50-59. [75] 卢曼曼,张家林,王洪峰,等.猪氨基肽酶N不是猪德尔塔冠状病毒入侵宿主细胞的受体[J].中国预防兽医学报,2017,39(9):701-706. LU M M, ZHANG J L, WANG H F, et al. Porcine aminopeptidase N is not the receptor for porcine deltacoronavirus entry into host cells[J]. Chinese Journal of Preventive Veterinary Medicine, 2017, 39(9): 701-706. (in Chinese) [76] MA N, ZHANG M, ZHOU J, et al. Genome-wide CRISPR/Cas9 library screen identifies C16orf62 as a host dependency factor for porcine deltacoronavirus infection[J]. Emerg Microbes Infect, 2024, 13(1):2400559. [77] XIAO W, CHEN C, XIA S, et al. Cell-surface D-glucuronyl C5-epimerase binds to porcine deltacoronavirus spike protein facilitating viral entry[J]. J Virol, 2024, 98(8):e0088024. [78] GONG L, LI J, ZHOU Q, et al. A new bat-HKU2-like coronavirus in swine, China, 2017[J]. Emerg Infect Dis, 2017, 23(9):1607-1609. [79] ZHOU P, FAN H, LAN T, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin[J]. Nature, 2018, 556(7700):255-258. [80] YU D, ZHAO Z Y, YANG Y L, et al. The origin and evolution of emerged swine acute diarrhea syndrome coronavirus with zoonotic potential[J]. J Med Virol, 2023, 95(3):e28672. [81] LUO Y, CHEN Y, GENG R, et al. Broad cell tropism of SADS-CoV in vitro implies its potential cross-species infection risk[J]. Virol Sin, 2021, 36(3):559-563. [82] EDWARDS C E, YOUNT B L, GRAHAM R L, et al. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection[J]. Proc Natl Acad Sci U S A, 2020, 117(43):26915-26925. [83] TSE L V, MEGANCK R M, ARABA K C, et al. Genomewide CRISPR knockout screen identified PLAC8 as an essential factor for SADS-CoVs infection[J]. Proc Natl Acad Sci U S A, 2022, 119(18):e2118126119. [84] WANG N, SHI X, JIANG L, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4[J]. Cell Res, 2013, 23(8):986-993. [85] SONG X, SHI Y, DING W, et al. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes[J]. Nat Commun, 2021, 12(1):141. [86] WANG H, LIU X, ZHANG X, et al. TMPRSS2 and glycan receptors synergistically facilitate coronavirus entry[J]. Cell, 2024, 187(16):4261-4271. [87] MA W, FU H, JIAN F, et al. Immune evasion and ACE2 binding affinity contribute to SARS-CoV-2 evolution[J]. Nat Ecol Evol, 2023, 7(9):1457-1466. [88] 杜阳春,唐菁兰,王友军,等.活细胞内亚细胞结构蛋白质组学研究新技术——几种邻近标记策略的应用及比较[J].生物化学与生物物理进展,2019,46(7):641-653. DU Y C, TANG J L, WANG Y J, et al. New technologies for subcellular structural proteomics in living cells: application and comparison of several proximity labeling strategies[J]. Progress in Biochemistry and Biophysics, 2019, 46(7): 641-653. (in Chinese) [89] LIU P, HUANG M L, GUO H, et al. Design of customized coronavirus receptors[J]. Nature, 2024, 635(8040):978-986. |
| [1] | LI Mengfan, LI Qingyang, SONG Yanwen, SONG Zhenhui, ZHANG Xingcui. Structure and Function of Coronavirus S Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4241-4252. |
| [2] | LIU Junjun, GUO Donghui, LIU Huanhuan, SONG Runze, ZHAO Saiya, YANG Junyao, WEI Zhanyong, XIANG Yuqiang, CHEN Liying. Rapid Visual Detection for PDCoV/TGEV IgG Antibodies Using Smartphone-Assisted Colorimetric Sensing Platform based on Immunomagnetic Beads [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4559-4571. |
| [3] | YU Qiurong, CAI Xuhang, HE Yi, LI Jizong, MAO Li, XU Xingang, LI Bin. Identification and Isolation of a Caprine Coronavirus and Analysis of the Complete Genome Sequence [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4604-4614. |
| [4] | TAO Lihan, LIN Cui, WU Chengcheng, KANG Zhaofeng, HUANG Jianzhen. Research Progress on the Structure and Function of Proteins Encoded by Porcine Deltacoronavirus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3678-3689. |
| [5] | CAO Ning, ZHANG Hu, WANG Junli, SA Renna, ZHAO Feng, XIE Jingjing, GAO Lixiang, ZHAO Jiangtao, DONG Ying, WANG Yuming. Effect of Drying Method on Determination of Amino Acid Digestibility of Pig Feed by Biomimetic Method [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3893-3907. |
| [6] | WU Jianliang, SU Yang, MAO Ruihan, ZHOU Lei, YAN Tiantian, LI Zhi, LIU Jianfeng. Design and Effect Evaluation of A Whole-Genome Low-Density SNP Chip in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2733-2740. |
| [7] | WU Qianhui, ZHANG Yu, ZHANG Taoni, MO Meilan. Research Progress on Mechanism of Lipid Raft Involved in Coronavirus Infection and Its Application [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2112-2122. |
| [8] | MENG Xiangxu, LI Jia, REN Deming, CHEN Kuirong, HE Yiyun, WANG Lixian, SHENG Xihui, WANG Ligang. Study on Serum Metabolomics of High and Low Resilience Group of Min Pigs with Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1689-1699. |
| [9] | TIAN Shimao, TIAN Ke, LIU Yuqian, GU Qingxin, SHEN Yunzhi, ZHANG Chenghuai, BAO Yinli, YANG Guihong. Effect of Neuromedin B and Receptors on ITCH Expression Induced by H9N2 Subtype Influenza Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1834-1842. |
| [10] | CAO Liyan, KONG Xiangyu, YUAN Cong, DUAN Yueyue, MA Guoxiang, SHI Lei, ZHANG Yu, WAN Ying, LI Xiangtong, WANG Yating, DU Yu, ZHENG Haixue, WANG Qi. Identifcation of a Novel Linear B-cell Epitope in the Nucleocapsid Protein of Swine Acute Diarrhea Syndrome Coronavirus [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1854-1864. |
| [11] | HUANG Yani, TANG Xi, LI Jingquan, WEI Jiacheng, WU Zhenfang, LI Xinyun, XIAO Shijun, ZHANG Zhiyan. Large-scale Population Analysis of Potential Causal Genes for Daily Weight Gain and Age at 100 kg in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1100-1109. |
| [12] | WU Jiahao, WU Ziyi, DOU Tengfei, BAI Liyao, ZHANG Yongqian, DONG Lianhe, LI Pengfei, LI Xinjian, HAN Xuelei, LI Xiuling. Genome-wide Association Study of Copy Number Variation in Growth-Related Traits of Yunong-Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1110-1119. |
| [13] | YANG Yuting, CHEN Guoliang, CHANG Qiaoning, BAO Wu, LIU Jingchao, JI Mengting, RONG Xiaoyin, GUO Xiaohong, YANG Yang, LI Bugao. miR-375-3p Targets Fam229a to Regulate Porcine Precursor Adipocyte Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1120-1133. |
| [14] | JIANG Huihua, ZHAO Long, GUO Kangkang. Effect of HE Gene Receptor Binding Domain Variation on Bovine Coronavirus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1336-1343. |
| [15] | PAN Junyi, WU Qingyao, TAN Bi'e, GUO Qiuping, HUANG Ruilin, CHEN Jiashun. Research Progress on Precise Nutrition Supply Technology and Intelligent Farming Equipment for Growing-Finishing Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 501-512. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||