Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (6): 2641-2651.doi: 10.11843/j.issn.0366-6964.2024.06.035
• Basic Veterinary Medicine • Previous Articles Next Articles
Youli YU1,*(), Jiandong WANG1(
), Ya'nan GUO1, Jiupan ZHANG1, Feng XUE2, Yuying CAO2
Received:
2023-10-07
Online:
2024-06-23
Published:
2024-06-28
Contact:
Youli YU
E-mail:yyl06010323@163.com;jiandongwang668@126.com
CLC Number:
Youli YU, Jiandong WANG, Ya'nan GUO, Jiupan ZHANG, Feng XUE, Yuying CAO. Role of Guanylate Binding Protein 2b during Macrophage Polarization Induced by Mycobacterium bovis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2641-2651.
Table 1
The siRNA sequence of GBP2b and negative control"
基因名称 Gene names | 正义链(5→3′) Sense | 反义链(5→3′) Antisense (5′-3′) |
siGBP2b-388 | GCAGCACCUUCAUCUACAATT | UUGUAGAUGAAGGUGCUGCTT |
siGBP2b-765 | GACCAGCUGAAUAAAGAAUTT | AUUCUUUAUUCAGCUGGUCTT |
siGBP2b-1625 | GAGCAACAAAGAAUCAUAUTT | AUAUGAUUCUUUGUUGCUCTT |
siCon | UUCUCCGAACGUGUCACGUTT | ACGUGACACGUUCGGAGAATT |
Table 2
The real-time PCR primers used in this study"
基因名称 Gene names | 正义链(5′→3′) Sense | 反义链(5′→3′) Antisense |
GBP2b | GAGTACTCTCTGGAA | TAGATGAAGGTGCTG |
iNOS | TGGTGAAGGGACTGAGCTGT | GCTACTCCGTGGAGTGAACA |
IL-1β | TGCCACCTTTTGACAGTGATG | TGATGTGCTGCTGCGAGATT |
TNF-α | TAGCCCACGTCGTAGCAAAC | GCAGCCTTGTCCCTTGAAGA |
Mrc1 | ATGGATTGCCCTGAACAGCA | TGTACCGCACCCTCCATCTA |
IL-10 | CCAAGGTGTCTACAAGGCCA | GCTCTGTCTAGGTCCTGGAGT |
Arg1 | CTCCAAGCCAAAGTCCTTAGAG | AGGAGCTGTCATTAGGGACATC |
Table 3
Antibody information"
抗体 Antibody | 来源 Source | 稀释比例 Dilution ratio | 生产厂家 Manufacture |
Anti-B-actin antibody | 鼠单克隆抗体 | 1∶2 000 | Cell Signaling |
Anti-GAPDH antibody | 鼠单克隆抗体 | 1∶2 000 | Cell Signaling |
Anti-GBP2b antibody | 兔单克隆抗体 | 1∶500 | Cell Signaling |
Anti-P-NF-κB p65 antibody | 兔单克隆抗体 | 1∶1 000 | Cell Signaling |
Anti-NF-κB antibody | 兔单克隆抗体 | 1∶1 000 | Cell Signaling |
Anti-TLR2 antibody | 兔单克隆抗体 | 1∶1 000 | Cell Signaling |
Anti-TLR4 antibody | 兔单克隆抗体 | 1∶1 000 | Cell Signaling |
Anti-MyD88 antibody | 兔单克隆抗体 | 1∶1 000 | Cell Signaling |
Anti-TRAF-6 antibody | 兔单克隆抗体 | 1∶1 000 | Cell Signaling |
Fig. 1
Changes in mRNA and protein levels of GBP2b after M. bovis infected RAW264.7 cells Detection of GBP2b mRNA and protein expression after infection of RAW264.7 cells with M. bovis at MOI of 0, 2, 10, and 50 for 24 h, or infected with M. bovis at MOI of 10 for 0, 6, 12, and 24 h, respectively. A, B. Results of qRT-PCR analysis of GBP2b in RAW264.7 cells; C, D. Results of Western blot analysis of protein expression of GBP2b in RAW264.7 cells. Values are "${\bar x}$±s" for at least three independent experiments performed in triplicate. ***. P < 0.001. MOI. The multiplicity of infection; HPI. Hours post-infection"
Fig. 2
GBP2b interference effect The mRNA and protein expression levels of GBP2b were detected by qRT-PCR(A) and Western blot(B) after infection of RAW264.7 cells with 10 MOI M. bovis. Values are "${\bar x}$±s" for at least three independent experiments performed in triplicate. *P < 0.05, *** P < 0.001, ns. No significance"
Fig. 3
Detection of M1 and M2 macrophage markers following GBP2b downregulation during M. bovis infection A, B. The mRNA expression levels of M1 marker genes (IL-1β, iNOS, and TNF-α) and M2 marker genes (IL-10, Arg1, and Mrc1) in RAW264.7 cells interfering with GBP2b were detected by qRT-PCR; C. Flow cytometry detection of CD86 or CD206 positive cells in RAW264.7 cells interfered with GBP2b.Values are "${\bar x}$±s" for at least three independent experiments performed in triplicate. *.P < 0.05, **.P < 0.01, ***. P < 0.001, ns. No significance"
Table 4
Prediction results of binding sites of the GBP2b and NF-κB promoters"
名称 Name | 得分 Score | 序列号 Sequence ID | 开始 Start | 结束 End | 有义链 Strand | 预测序列 Prediction sequence |
MA0105.3NFKB1 | 7.3007545 | GBP2b-WT: | 157 | 167 | - | TGGGTTGCCC |
MA0105.3NFKB1 | 5.5649486 | GBP2b-WT: | 135 | 145 | - | GGGTGTTTCTC |
MA0105.1NFKB1 | 8.029274 | GBP2b-WT: | 157 | 166 | + | GGGGCAACCC |
MA0105.4NFKB1 | 3.856709 | GBP2b-WT: | 50 | 62 | - | CGGGGAACCAGCG |
MA0105.2NFKB1 | 8.353432 | GBP2b-WT: | 29 | 398 | - | CGGGATCCTCC |
1 |
LANGE C , AABY P , BEHR M A , et al. 100 years of Mycobacterium bovis bacille Calmette-Guérin[J]. Lancet Infect Dis, 2022, 22 (1): e2- e12.
doi: 10.1016/S1473-3099(21)00403-5 |
2 |
TAYE H , ALEMU K , MIHRET A , et al. Global prevalence of Mycobacterium bovis infections among human tuberculosis cases: systematic review and meta-analysis[J]. Zoonoses Public Health, 2021, 68 (7): 704- 718.
doi: 10.1111/zph.12868 |
3 |
LOISEAU C , MENARDO F , ASEFFA A , et al. An African origin for Mycobacterium bovis[J]. Evol Med Public Health, 2020, 2020 (1): 49- 59.
doi: 10.1093/emph/eoaa005 |
4 |
GE G , JIANG H Q , XIONG J S , et al. Progress of the art of macrophage polarization and different subtypes in mycobacterial infection[J]. Front Immunol, 2021, 12, 752657.
doi: 10.3389/fimmu.2021.752657 |
5 |
HOWARD N C , KHADER S A . Immunometabolism during Mycobacterium tuberculosis Infection[J]. Trends Microbiol, 2020, 28 (10): 832- 850.
doi: 10.1016/j.tim.2020.04.010 |
6 |
KHAN A , SINGH V K , HUNTER R L , et al. Macrophage heterogeneity and plasticity in tuberculosis[J]. J Leukoc Biol, 2019, 106 (2): 275- 282.
doi: 10.1002/JLB.MR0318-095RR |
7 |
ANDRADE M R , AMARAL E P , RIBEIRO S C , et al. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages[J]. BMC Microbiol, 2012, 12, 166.
doi: 10.1186/1471-2180-12-166 |
8 | MILY A , KALSUM S , LORETI M G , et al. Polarization of M1 and M2 human monocyte-derived cells and analysis with flow cytometry upon Mycobacterium tuberculosis infection[J]. J Vis Exp, 2020, (163) |
9 | JIAO Y, ZHANG T, ZHANG C M, et al. Neutrophil-derived exosomes induce M1 macrophage polarization and prime macrophage pyroptosis via miR-30d-5p in sepsis[DB/OL]. Research Square, 2021, doi: 10.21203/rs.3.rs-665364/v1.[2024-04-01].https://www.researchsquare.com/article/rs-665364/v1. |
10 |
TSAI C F , CHEN G W , CHEN Y C , et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance[J]. Nutrients, 2021, 14 (1): 67.
doi: 10.3390/nu14010067 |
11 |
LE Y Q , CAO W , ZHOU L , et al. Infection of Mycobacterium tuberculosis promotes both M1/M2 polarization and MMP production in cigarette smoke-exposed macrophages[J]. Front Immunol, 2020, 11, 1902.
doi: 10.3389/fimmu.2020.01902 |
12 |
LIU Q H , TIAN Y , ZHAO X F , et al. NMAAP1 expressed in BCG-activated macrophage promotes M1 macrophage polarization[J]. Mol Cells, 2015, 38 (10): 886- 894.
doi: 10.14348/molcells.2015.0125 |
13 |
NGUYEN H , GAZY N , VENKETARAMAN V . A role of intracellular toll-like receptors (3, 7, and 9) in response to Mycobacterium tuberculosis and co-infection with HIV[J]. Int J Mol Sci, 2020, 21 (17): 6148.
doi: 10.3390/ijms21176148 |
14 |
WANDEL M P , KIM B H , PARK E S , et al. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms[J]. Nat Immunol, 2020, 21 (8): 880- 891.
doi: 10.1038/s41590-020-0697-2 |
15 |
FISCH D , BANDO H , CLOUGH B , et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis[J]. EMBO J, 2019, 38 (13): e100926.
doi: 10.15252/embj.2018100926 |
16 |
HONKALA A T , TAILOR D , MALHOTRA S V . Guanylate-binding protein 1: an emerging target in inflammation and cancer[J]. Front Immunol, 2020, 10, 3139.
doi: 10.3389/fimmu.2019.03139 |
17 |
YU Y L , Pan J L , LIU M T , et al. Guanylate-binding protein 2b regulates the AMPK/mTOR/ULK1 signalling pathway to induce autophagy during Mycobacterium bovis infection[J]. Virulence, 2022, 13 (1): 875- 889.
doi: 10.1080/21505594.2022.2073024 |
18 |
LUQUE-MARTIN R , ANGELL D C , KALXDORF M , et al. IFN-γ drives human monocyte differentiation into highly proinflammatory macrophages that resemble a phenotype relevant to psoriasis[J]. J Immunol, 2021, 207 (2): 555- 568.
doi: 10.4049/jimmunol.2001310 |
19 |
ZHANG S , CHU C L , WU Z S , et al. IFIH1 contributes to M1 macrophage polarization in ARDS[J]. Front Immunol, 2021, 11, 580838.
doi: 10.3389/fimmu.2020.580838 |
20 |
HALU A , WANG J G , IWATA H , et al. Context-enriched interactome powered by proteomics helps the identification of novel regulators of macrophage activation[J]. Elife, 2018, 7, e37059.
doi: 10.7554/eLife.37059 |
21 |
QIU X X , GUO H , YANG J S , et al. Down-regulation of guanylate binding protein 1 causes mitochondrial dysfunction and cellular senescence in macrophages[J]. Sci Rep, 2018, 8 (1): 1679.
doi: 10.1038/s41598-018-19828-7 |
22 |
KUMAR P , TYAGI R , DAS G , et al. Mycobacterium indicus pranii and Mycobacterium bovis BCG lead to differential macrophage activation in Toll-like receptor-dependent manner[J]. Immunology, 2014, 143 (2): 258- 268.
doi: 10.1111/imm.12306 |
23 |
NI J M , LIU Y D , HUSSAIN T , et al. Recombinant ArgF PLGA nanoparticles enhances BCG induced immune responses against Mycobacterium bovis infection[J]. Biomed Pharmacother, 2021, 137, 111341.
doi: 10.1016/j.biopha.2021.111341 |
24 |
RAVESLOOT-CHÁVEZ M M , VAN DIS E , STANLEY S A . The innate immune response to Mycobacterium tuberculosis infection[J]. Annu Rev Immunol, 2021, 39 (1): 611- 637.
doi: 10.1146/annurev-immunol-093019-010426 |
25 |
HUANG Z K , LUO Q , GUO Y , et al. Mycobacterium tuberculosis-induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro[J]. PLoS One, 2015, 10 (6): e0129744.
doi: 10.1371/journal.pone.0129744 |
26 | DA COSTA A C , DE RESENDE D P , DE P O SANTOS B , et al. Modulation of macrophage responses by CMX, a fusion protein composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis[J]. Front Microbiol, 2017, 8, 623. |
27 |
IMAI K , KURITA-OCHIAI T , OCHIAI K , et al. Mycobacterium bovis bacillus Calmette-Guérin infection promotes SOCS induction and inhibits IFN-γ-stimulated JAK/STAT signaling in J774 macrophages[J]. FEMS Immunol Med Microbiol, 2003, 39 (2): 173- 180.
doi: 10.1016/S0928-8244(03)00231-1 |
28 |
KEEWAN E , NASER S A . Notch-1 signaling modulates macrophage polarization and immune defense against Mycobacterium avium paratuberculosis infection in inflammatory diseases[J]. Microorganisms, 2020, 8 (7): 1006.
doi: 10.3390/microorganisms8071006 |
29 |
WU Y Q , SUN Q , DAI L . Immune regulation of miR-30 on the Mycobacterium tuberculosis-induced TLR/MyD88 signaling pathway in THP-1 cells[J]. Exp Ther Med, 2017, 14 (4): 3299- 3303.
doi: 10.3892/etm.2017.4872 |
[1] | Liqun WANG, Yixuan WU, Guiting PU, Shanling CAO, Dexian WNAG, Tingli LIU, Hong LI, Tharheer Oluwashola AMUDA, Xiaola GUO, Hong YIN, Xuenong LUO. Knockdown of let-7-5p from Echinococcus multilocularis Inhibited the Peritoneal Macrophages Polarization and Worm Growth in BALB/c Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2619-2628. |
[2] | WANG Xinxin, LIN Shumei, ZHAO Dongdong, WANG Xuesheng. Role of Exosomes Secreted by Alveolar Epithelial Cells in Regulating Macrophage Polarization in Acute Lung Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 71-78. |
[3] | YAO Min, SHI Bomei, HUANG Tinghua. A Preliminary Research of the Regulation of MAPK-CDK6-RB Pathway by Salmonella SptP in Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1187-1198. |
[4] | GUO Xinyu, WANG Haotian, ZHANG Xuemei, WANG Xiaolong, LI Heping, YANG Yanbin, ZHONG Kai. Study on the Regulation of Macrophage Polarization by Exosomes Derived from Cow Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4754-4765. |
[5] | JING Lirong, ZHANG Chao, QIAO Jie, HAI Nisige, YANG Ying, GAO Zhenzhen. Effects of Selenium on the Function of Dendritic Cells and Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3231-3240. |
[6] | LI Yanping, LIU Tingli, LI Hong, CHEN Guoliang, WANG Liqun, GUO Xiaola, LUO Xuenong. Construction and Analysis of Polarization-related ceRNA Regulatory Network in Mouse Kupffer Cells Induced by Echinococcus multilocularis [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4410-4418. |
[7] | WANG Zhengrong, MA Xun, ZHANG Yanyan, MENG Jimeng, BO Xinwen. Analysis of Genes Related to Immune Interaction between Protoscolices of Echinococcus granulosus and Macrophage RAW264.7 by Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3975-3988. |
[8] | WANG Zhengrong, MA Xun, ZHANG Yanyan, MENG Jimeng, BO Xinwen. Study on the Expression Profile of Th1/Th2 Immune Response-related Genes in Macrophage RAW264.7 in Response to the Stimulation of Echinococcus granulosus Protoscoleces [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 250-262. |
[9] | SHEN Jiakun, TANG Qian, CUI Yangyang, JIN Xiaoming, LI Yansen, LI Chunmei. Fine Particulate Matter from Pig House Promote M1 Polarization in Porcine Primary Alveolar Macrophage [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1717-1726. |
[10] | LI Qi, NIU Junhui, WANG Xiaoli, MAO Jing, QUAN Yingying, LIU Guikun, LEI Xianqian, ZHU Pengyao, LIAO Chengshui. The Nuclease Activity of Extracellular Products from Salmonella Choleraesuis and Its Effect on the Formation of Macrophages Extracellular Traps [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 733-741. |
[11] | ZHAO Qi-ling,ZHANG Xin-chen,CHEN Meng-meng,SUN Jia-rui,BAO En-dong,ZHANG Shu-xia,Lü Ying-jun. Regulation of Interferon Signaling Pathway in Alveolar Macrophages of Piglets Infected with Procine Circovirus Type 2 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(3): 587-594. |
[12] | ZHANG Ya-qun, HAN Jun-yuan, GUO Hua, CHEN Meng-meng, DUAN Dian-ning, ZHANG Shu-xia. Changes of Toll-like Receptor mRNA Transcription in Alveolar Macrophages of Piglets Infected with Porcine Circovirus Type 2 [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(5): 802-808. |
[13] | CHEN Yi-jie, HUANG Zhi-jian, JIANG He-ji. Effects of Hoya Saponins on Immune Function and Antioxidation Activity of Mouse Peritoneal Macrophages [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(11): 1838-1843. |
[14] | . Effects of PRRSV and PCV2 Co-infection in vivo on the Transcriptions of IL-10, IL-12p40 and IFN-γ mRNA in Porcine Pulmonary Alveolar Macrophages [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2007, 38(4): 382-387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||