Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (6): 2304-2312.doi: 10.11843/j.issn.0366-6964.2024.06.003
• Review • Previous Articles Next Articles
Ming FENG(), Xudong YI, Weijun PANG*(
)
Received:
2023-11-21
Online:
2024-06-23
Published:
2024-06-28
Contact:
Weijun PANG
E-mail:fengm9095@nwafu.edu.cn;pwj1226@nwafu.edu.cn
CLC Number:
Ming FENG, Xudong YI, Weijun PANG. Advances in Intestinal Microorganism Regulating Pork Quality through Skeletal Muscle Fiber Type, Intramuscular Fat Content and Skeletal Muscle Metabolism[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2304-2312.
Table 1
Intestinal microorganisms regulate pork quality"
微生物 Microorganism | 作用 Function | 参考文献 Reference |
枯草芽孢杆菌Bacillus subtilis | 改善猪肉色,减少滴水损失 | [ |
乳酸杆菌Lactobacillus | 降低猪肉剪切力和硬度 | [ |
酵母菌、乳酸菌、枯草芽孢杆菌 Yeasts, lactic acid-producing bacteria, Bacillus subtilis | 降低猪肉的滴水损失和蒸煮损失,但对pH和剪切力没有影响 | [ |
酿酒酵母菌、干酪乳杆菌、植物乳杆菌 Saccharomyces cerevisiae, Lactobacillus casei, Lactobacillus plantarum | 提高猪肉滴水损失和剪切力 | [ |
植物乳杆菌、产朊假丝酵母、枯草芽孢杆菌 Lactobacillus plantarum, Candida utilis, Bacillus subtilis | 降低猪肉硬度 | [ |
酿酒酵母菌、罗伊氏乳杆菌、枯草芽孢杆菌 Saccharomyces cerevisiae, Lactobacillus reuteri, Bacillus subtilis | 降低猪肉剪切力和滴水损失,增加风味 | [ |
Table 2
Role and mechanism of intestinal microorganisms in regulating muscle fiber type and intramuscular fat deposition"
方法 Method | 作用 Function | 机制 Mechanism | 参考文献 Reference |
将荣昌猪的肠道微生物移植到无菌小鼠中 Transplantation of gut microorganisms from Rongchang pigs into germ-free mice | 慢肌纤维的比例增多而快肌纤维的比例减少 | 移植的肠道微生物使小鼠肌球蛋白重链7 (MyH7)基因表达水平升高,肌球蛋白重链4 (MyH4)基因表达水平降低 | [ |
将对照仔猪的肠道微生物移植到GF仔猪中 Transplantation of gut microorganisms from control piglets into GF piglets | GF仔猪肌肉中MyHC Ⅰ和ⅡA基因上调,MyHC ⅡB和ⅡX基因略有下降 | SCFAs含量不同导致PGC-1α表达量不同 | [ |
在日粮中补充植物乳杆菌 Supplementation of diets with Lactobacillus plantarum TWK10 | 运动能力增强且腓肠肌中I型肌纤维的比例显著增加 | 外来细菌的定植通过各类激素和细胞因子引起肌肉组织对能量的利用效率不同 | [ |
泰乐菌素处理仔猪 Administration of tylosin to piglet diets | 增加了背腰最长肌肌内脂肪的含量 | 增加了脂肪酸摄取和从头合成相关基因的表达,降低了与甘油三酯水解相关基因的表达 | [ |
将金华猪和长白猪肠道微生物分别移植到小鼠中 Transplantation of gut microorganisms from Jinhua and Landrace pigs into mice, respectively | 移植金华猪粪便的小鼠肌内脂肪较多 | SCFAs抑制了血管生成素样蛋白4 (ANGPTL4)的表达,缓解了对脂蛋白酯酶的抑制作用 | [ |
将莱芜猪肠道微生物移植到DLY猪中 Transplantation of gut microorganisms from Laiwu pigs into DLY pigs | 三元杂交猪肌内脂肪含量显著提高 | 增加了三元杂交猪肌肉中与脂质合成相关的基因和蛋白质的表达,例如CD36、DGAT2等 | [ |
1 | 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[J]. 中国统计, 2023, (3): 12- 29. |
National Bureau of Statistics . Statistical Bulletin of the People's Republic of China on national economic and social development for 2022[J]. China Statistics, 2023, (3): 12- 29. | |
2 |
MACKIE R I , SGHIR A , GASKINS H R . Developmental microbial ecology of the neonatal gastrointestinal tract[J]. Am J Clin Nutr, 1999, 69 (5): 1035S- 1045S.
doi: 10.1093/ajcn/69.5.1035s |
3 |
MARTIN R A , VIGGARS M R , ESSER K A . Metabolism and exercise: the skeletal muscle clock takes centre stage[J]. Nat Rev Endocrinol, 2023, 19 (5): 272- 284.
doi: 10.1038/s41574-023-00805-8 |
4 |
WANG Y P , WANG J Y , HU H M , et al. Dynamic transcriptome profiles of postnatal porcine skeletal muscle growth and development[J]. BMC Genom Data, 2021, 22 (1): 32.
doi: 10.1186/s12863-021-00984-1 |
5 |
ST-PIERRE B , PEREZ PALENCIA J Y , SAMUEL R S . Impact of early weaning on development of the swine gut microbiome[J]. Microorganisms, 2023, 11 (7): 1753.
doi: 10.3390/microorganisms11071753 |
6 |
ISAACSON R , KIM H B . The intestinal microbiome of the pig[J]. Anim Health Res Rev, 2012, 13 (1): 100- 109.
doi: 10.1017/S1466252312000084 |
7 |
LUO Y H , REN W , SMIDT H , et al. Dynamic distribution of gut microbiota in pigs at different growth stages: composition and contribution[J]. Microbiol Spectr, 2022, 10 (3): e0068821.
doi: 10.1128/spectrum.00688-21 |
8 |
PLUSKE J R , TURPIN D L , KIM J C . Gastrointestinal tract (gut) health in the young pig[J]. Anim Nutr, 2018, 4 (2): 187- 196.
doi: 10.1016/j.aninu.2017.12.004 |
9 |
KRAUTKRAMER K A , FAN J , BÄCKHED F . Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19 (2): 77- 94.
doi: 10.1038/s41579-020-0438-4 |
10 | BUFFIE C G , PAMER E G . Microbiota-mediated colonization resistance against intestinal pathogens[J]. Nat Rev Microbiol, 2013, 13 (11): 790- 801. |
11 | 杨彤, 黄兴国, 尹杰, 等. 粪便微生物移植对猪肠道微生物和肠黏膜屏障功能影响的研究进展[J]. 动物营养学报, 2023, 35 (8): 4795- 4803. |
YANG T , HUANG X G , YIN J , et al. Research progress on effects of fecal microbiota transplantation on intestinal microbes and intestinal mucosal barrier function in pigs[J]. Chinese Journal of Animal Nutrition, 2023, 35 (8): 4795- 4803. | |
12 |
WESSELS A G . Influence of the gut microbiome on feed intake of farm animals[J]. Microorganisms, 2022, 10 (7): 1305.
doi: 10.3390/microorganisms10071305 |
13 |
BELDOWSKA A , BARSZCZ M , DUNISLAWSKA A . State of the art in research on the gut-liver and gut-brain axis in poultry[J]. J Animal Sci Biotechnol, 2023, 14 (1): 37.
doi: 10.1186/s40104-023-00853-0 |
14 |
BALASUBRAMANIAN B , LI T S , KIM I H . Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits[J]. R Bras Zootec, 2016, 45 (3): 93- 100.
doi: 10.1590/S1806-92902016000300002 |
15 |
ZHU Q , SONG M T , AZAD M A K , et al. Probiotics and synbiotics addition to Bama Mini-Pigs' diet improve carcass traits and meat quality by altering plasma metabolites and related gene expression of offspring[J]. Front Vet Sci, 2022, 9, 779745.
doi: 10.3389/fvets.2022.779745 |
16 |
SUO C , YIN Y S , WANG X N , et al. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Vet Res, 2012, 8, 89.
doi: 10.1186/1746-6148-8-89 |
17 | DUAN H T , LU L Z , ZHANG L , et al. Effects of lactobacillus lactis supplementation on growth performance, hematological parameters, meat quality and intestinal flora in growing-finishing pigs[J]. Animals (Basel), 2023, 13 (7): 1247. |
18 | LIU T Y , SU B C , WANG J L , et al. Effects of probiotics on growth, pork quality and serum metabolites in growing-finishing pigs[J]. J Northeast Agric Univ (Engl Ed), 2013, 20 (4): 57- 63. |
19 | RYBARCZYK A , BOGUSŁAWSKA-WĄ S E , PILARCZYK B . Carcass and pork quality and gut environment of pigs fed a diet supplemented with the bokashi probiotic[J]. Animals (Basel), 2021, 11 (12): 3590. |
20 |
TANG X P , LIU X G , ZHANG K . Effects of microbial fermented feed on serum biochemical profile, carcass traits, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs[J]. Front Vet Sci, 2021, 8, 744630.
doi: 10.3389/fvets.2021.744630 |
21 | YANG X , JIANG Z , QIU Y , et al. 447 Effects of probiotic solid-state fermented complete feed on growth performance and pork quality of finishing pigs[J]. J Anim Sci, 2018, 96 (S3): 232. |
22 |
周敏, 汪凯歌, 张濂, 等. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53 (9): 2845- 2857.
doi: 10.11843/j.issn.0366-6964.2022.09.003 |
ZHOU M , WANG K G , ZHANG L , et al. Advances in Microbiota-Gut-Muscle axis regulating skeletal muscle metabolism and function[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 2845- 2857.
doi: 10.11843/j.issn.0366-6964.2022.09.003 |
|
23 |
LEFEVRE C , BINDELS L B . Role of the gut microbiome in skeletal muscle physiology and pathophysiology[J]. Curr Osteoporos Rep, 2022, 20 (6): 422- 432.
doi: 10.1007/s11914-022-00752-9 |
24 | SAWANO S , MIZUNOYA W . History and development of staining methods for skeletal muscle fiber types[J]. Histol Histopathol, 2022, 37 (6): 493- 503. |
25 | LISTRAT A , LEBRET B , LOUVEAU I , et al. How muscle structure and composition influence meat and flesh quality[J]. Sci World J, 2016, 2016, 3182746. |
26 |
LEMASTER M N , WARNER R D , CHAUHAN S S , et al. Meta-regression analysis of relationships between fibre type and meat quality in beef and pork-focus on pork[J]. Foods, 2023, 12 (11): 2215.
doi: 10.3390/foods12112215 |
27 |
MATARNEH S K , SILVA S L , GERRARD D E . New insights in muscle biology that alter meat quality[J]. Annu Rev Anim Biosci, 2021, 9, 355- 377.
doi: 10.1146/annurev-animal-021419-083902 |
28 |
JEONG D W , CHOI Y M , LEE S H , et al. Correlations of trained panel sensory values of cooked pork with fatty acid composition, muscle fiber type, and pork quality characteristics in Berkshire pigs[J]. Meat Sci, 2010, 86 (3): 607- 615.
doi: 10.1016/j.meatsci.2010.04.011 |
29 |
YAN H L , DIAO H , XIAO Y , et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J]. Sci Rep, 2016, 6, 31786.
doi: 10.1038/srep31786 |
30 |
QI R L , SUN J , QIU X Y , et al. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets[J]. Sci Rep, 2021, 11 (1): 11237.
doi: 10.1038/s41598-021-90881-5 |
31 |
CHEN Y M , WEI L , CHIU Y S , et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J]. Nutrients, 2016, 8 (4): 205.
doi: 10.3390/nu8040205 |
32 | LIU T , BAI Y P , WANG C L , et al. Effects of probiotics supplementation on the intestinal metabolites, muscle fiber properties, and meat quality of sunit lamb[J]. Animals (Basel), 2023, 13 (4): 762. |
33 |
YAN H L , YU B , DEGROOTE J , et al. Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets[J]. BMC Vet Res, 2020, 16 (1): 392.
doi: 10.1186/s12917-020-02592-0 |
34 |
DAVIE J R . Inhibition of histone deacetylase activity by butyrate[J]. J Nutr, 2003, 133 (7): 2485S- 2493S.
doi: 10.1093/jn/133.7.2485S |
35 |
WALSH M E , BHATTACHARYA A , SATARANATARAJAN K , et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging[J]. Aging Cell, 2015, 14 (6): 957- 970.
doi: 10.1111/acel.12387 |
36 |
LIN J D , WU H , TARR P T , et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres[J]. Nature, 2002, 418 (6899): 797- 801.
doi: 10.1038/nature00904 |
37 |
ABRIGO J , OLGUÍN H , GUTIERREZ D , et al. Bile acids induce alterations in mitochondrial function in skeletal muscle fibers[J]. Antioxidants (Basel), 2022, 11 (9): 1706.
doi: 10.3390/antiox11091706 |
38 | HOCQUETTE J F , GONDRET F , BAÉZA E , et al. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers[J]. Animals (Basel), 2010, 4 (2): 303- 319. |
39 | 徐秋良, 吴运香, 张长兴, 等. 畜禽肉嫩度及其影响因素[J]. 家畜生态学报, 2010, 31 (6): 100- 103. |
XU Q L , WU Y X , ZHANG C X , et al. Animal meat tenderness and its influencing factors[J]. Acta Ecologae Animalis Domastici, 2010, 31 (6): 100- 103. | |
40 | LEI L F , WANG Z B , LI J Z , et al. Comparative microbial profiles of colonic digesta between Ningxiang Pig and Large White Pig[J]. Animals (Basel), 2021, 11 (7): 1862. |
41 |
TANG S , XIN Y , MA Y L , et al. Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract[J]. Front Microbiol, 2020, 11, 586776.
doi: 10.3389/fmicb.2020.586776 |
42 |
FANG S M , XIONG X W , SU Y , et al. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen[J]. BMC Microbiol, 2017, 17 (1): 162.
doi: 10.1186/s12866-017-1055-x |
43 |
CHEN C Y , FANG S M , WEI H , et al. Prevotella copri increases fat accumulation in pigs fed with formula diets[J]. Microbiome, 2021, 9 (1): 175.
doi: 10.1186/s40168-021-01110-0 |
44 |
WU C F , LYU W , HONG Q H , et al. Gut microbiota influence lipid metabolism of skeletal muscle in pigs[J]. Front Nutr, 2021, 8, 675445.
doi: 10.3389/fnut.2021.675445 |
45 |
XIE C L , TENG J Y , WANG X K , et al. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes[J]. Anim Nutr, 2022, 9, 84- 99.
doi: 10.1016/j.aninu.2021.10.010 |
46 | LI J , LIU J Q , ZHANG S , et al. The effect of rearing conditions on carcass traits, meat quality and the compositions of fatty acid and amino acid of LTL in Heigai Pigs[J]. Animals (Basel), 2021, 12 (1): 14. |
47 |
QI K K , MEN X M , WU J , et al. Rearing pattern alters porcine myofiber type, fat deposition, associated microbial communities and functional capacity[J]. BMC Microbiol, 2019, 19 (1): 181.
doi: 10.1186/s12866-019-1556-x |
48 | 侯改凤, 李瑞, 刘明, 等. 德氏乳杆菌对育肥猪胴体性状及肉品质的影响[J]. 动物营养学报, 2016, 28 (6): 1814- 1822. |
HOU G F , LI R , LIU M , et al. Effects of Lactobacillus delbrueckii on carcass traits and meat quality of fattening pigs[J]. Chinese Journal of Animal Nutrition, 2016, 28 (6): 1814- 1822. | |
49 |
TIAN Z M , CUI Y Y , LU H J , et al. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs[J]. Meat Sci, 2021, 171, 108234.
doi: 10.1016/j.meatsci.2020.108234 |
50 | DINH T T N , TO K V , SCHILLING M W . Fatty acid composition of meat animals as flavor precursors[J]. Meat Muscle Biol, 2021, 5 (1): 34. |
51 | SCHUMACHER M , DELCURTO-WYFFELS H , THOMSON J , et al. Fat deposition and fat effects on meat quality-a review[J]. Animals (Basel), 2022, 12 (12): 1550. |
52 |
WOOD JD , ENSER M , FISHER AV , et al. Fat deposition, fatty acid composition and meat quality: A review[J]. Meat Sci, 2008, 78 (4): 343- 358.
doi: 10.1016/j.meatsci.2007.07.019 |
53 |
LIN J M , NAOT D , WATSON M , et al. Skeletal actions of fasting-induced adipose factor (FIAF)[J]. Endocrinology, 2013, 154 (12): 4685- 4694.
doi: 10.1210/en.2013-1238 |
54 | CHANG H, KWON O, SHIN M S, et al. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J]. J Appl Physiol (1985), 2018, 125(3): 715-722. |
55 |
BÄCKHED F , DING H , WANG T , et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101 (44): 15718- 15723.
doi: 10.1073/pnas.0407076101 |
56 |
MA J , DUAN Y H , LI R , et al. Gut microbial profiles and the role in lipid metabolism in Shaziling pigs[J]. Anim Nutr, 2022, 9, 345- 356.
doi: 10.1016/j.aninu.2021.10.012 |
57 |
JIAO A R , YU B , HE J , et al. Short chain fatty acids could prevent fat deposition in pigs via regulating related hormones and genes[J]. Food Funct, 2020, 11 (2): 1845- 1855.
doi: 10.1039/C9FO02585E |
58 |
JIAO A R , DIAO H , YU B , et al. Infusion of short chain fatty acids in the ileum improves the carcass traits, meat quality and lipid metabolism of growing pigs[J]. Anim Nutr, 2021, 7 (1): 94- 100.
doi: 10.1016/j.aninu.2020.05.009 |
59 |
ALIANI M , FARMER L J , KENNEDY J T , et al. Post-slaughter changes in ATP metabolites, reducing and phosphorylated sugars in chicken meat[J]. Meat Sci, 2013, 94 (1): 55- 62.
doi: 10.1016/j.meatsci.2012.11.032 |
60 |
MARUTA H , YOSHIMURA Y , ARAKI A , et al. Activation of AMP-activated protein kinase and stimulation of energy metabolism by acetic acid in L6 myotube cells[J]. PLoS One, 2016, 11 (6): e0158055.
doi: 10.1371/journal.pone.0158055 |
61 |
HAN J H , KIM I S , JUNG S H , et al. The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41[J]. PLoS One, 2014, 9 (4): e95268.
doi: 10.1371/journal.pone.0095268 |
62 |
HOUGHTON M J , KERIMI A , MOULY V , et al. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism[J]. FASEB J, 2019, 33 (2): 1887- 1898.
doi: 10.1096/fj.201801209R |
63 |
CHOI Y , KWON Y , KIM D K , et al. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle[J]. Sci Rep, 2015, 5, 15878.
doi: 10.1038/srep15878 |
64 |
QIU Y X , YU J M , LI Y , et al. Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling[J]. Ann Med, 2021, 53 (1): 508- 522.
doi: 10.1080/07853890.2021.1900593 |
65 |
BINDELS L B , BECK R , SCHAKMAN O , et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7 (6): e37971.
doi: 10.1371/journal.pone.0037971 |
[1] | Binghong XIE, Yifan LIU, Fuguang XUE, Yanju SHAN, Yunjie TU, Gaige JI, Xiaojun JU, Jingting SHU, Hongxiang WU. The Mechanism of Effect of Hypoxia on Myofiber Type Transformation in Chicken Myoblasts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2397-2408. |
[2] | Zhibin LUO, Huimin OU, Jianzhong LI, Zhiliang TAN, Jinzhen JIAO. Effects of Low Protein Diet Supplemented with Rumen-protected Amino Acids on Growth Performance, Nutrient Apparent Digestibility and Meat Quality of Hulun Buir Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2498-2509. |
[3] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[4] | LEI Yanru, HU Xiaoyu, XU Chunhong, ZHANG Chenxi, DU Wenping, WANG Yangguang, LI Donghua, SUN Guirong, LI Wenting, KANG Xiangtao. Comparative Analysis of Growth, Carcass and Meat Quality Traits of Five Hybrid Combinations of Houdan Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1521-1535. |
[5] | LIU Yuan, LI Xiyue, ZHANG Weiya. Molecular Mechanism of MMP14 Regulating Skeletal Muscle Satellite Cell Differentiation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1592-1604. |
[6] | LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo. Regulation and Mechanism of Proline Hydroxylases(PHDs) on Skeletal Muscle Development and Fat Deposition in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 867-873. |
[7] | ZUO Zizhen, WANG Haibo, CHAI Zhixin, FU Jianhui, ZHANG Xiangfei, LUO Xiaolin, ZHONG Jincheng. Effects of Rumen-protected Methionine on Meat Quality, Volatile Flavor Compounds and Fatty Acid Composition of Yak Semitendinosus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1102-1114. |
[8] | MIAO Shu, AN Jishan, WANG Zuo, XIAO Dingfu, LAN Xinyi, LIU Lei, SHEN Weijun, WAN Fachun. Leucine Promotes the Proliferation of Bovine Myoblasts through PI3K-AKT Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 142-152. |
[9] | HU Ying, ZHOU Xiaorong, HUANG Jinxiu, YANG Feiyun, LI Jing, TANG Chaohua, ZHAO Qingyu, YANG Youyou, ZHANG Kai, ZHANG Junmin. Research on the Differences of Carcass Traits, Meat Quality and Flavor Substances between Rongchang and Duroc×Landrace×Yorkshire Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1877-1892. |
[10] | YUN Jiale, LIU Chang, HUANG Xiaoyu, LIU Qiaoxia, SHI Mingyue, LI Wenxia, NIU Jin, WANG Shouyuan, GAO Pengfei, GUO Xiaohong, LI Bugao, LU Chang, CAO Guoqing. miR-145-5p Inhibits the Proliferation and Differentiation of Porcine Skeletal Muscle Satellite Cells by Targeting IGF1R-Mediated AKT Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1893-1904. |
[11] | LU Mengqi, YANG Wengjie, LI Ping, YU Peng, DONG Ling, NIU Xiaoyu, YANG Keli, ZOU Weihua, SONG Hui. Changes of PRRSV Infection on Microorganisms in Lungs and Intestines of Piglets based on 16S rRNA Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1664-1678. |
[12] | SU Yanfang, YANG Man, NIU Naiqi, HOU Xinhua, ZHANG Longchao. Association Analysis of FABP3 and SCD Gene Polymorphisms with Meat Quality Traits in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 966-975. |
[13] | YANG Guang, XU Jing, LI Xin, HU Debao, GUO Yiwen, DING Xiangbin, GUO Hong, ZHANG Linlin. Effect of Interfering lncbMD on Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1015-1025. |
[14] | WANG Weihao, DUAN Yan, WANG Hongdi, DOU Lu, LIU Ting, KANG Letian, SUN Lina, AO Tehenggerile, JIN Ye. Effects of Feeding Regimens on Growth Performance, Slaughter Performance, Meat Quality and Rumen Bacteria Community of Sunit Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1085-1094. |
[15] | JIA Zijie, BAO Tugeqin, DING Wenqi, REN Xiujuan, LIU Huiying, LI Xinze, CUI Fang, DUGARJAVIIN Manglai, BAI Dongyi. Construction and Comparative Study of the Phenotypic Spectrum of the Main Skeletal Muscles Throughout the Mongolian Horse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 596-607. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||