Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4302-4310.doi: 10.11843/j.issn.0366-6964.2024.10.006
• Animal Genetics and Breeding • Previous Articles Next Articles
Cheng XU(), Wenjie TIAN, Yuehui MA, Shengnan WANG, Lin JIANG, Dandan WANG*(
)
Received:
2024-03-15
Online:
2024-10-23
Published:
2024-11-04
Contact:
Dandan WANG
E-mail:1326843913@qq.com;wangdd1993@126.com
CLC Number:
Cheng XU, Wenjie TIAN, Yuehui MA, Shengnan WANG, Lin JIANG, Dandan WANG. Changes in Gut Microbiota after ZBED6 Knockout were Analyzed Based on 16S rRNA Sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4302-4310.
Fig. 4
Muscle phenotype and differential intestinal flora in Bama boars and sows A. Muscle weight in Bama wild type male and female; B. Muscle proportion of wild type male and female of Bama Pig; C. Different intestinal flora between male and female Bama Pigs. *. P < 0.05; **. P < 0.01; ***. P < 0.001, the same as below"
Fig. 5
Wild type and ZBED6-knockout type muscle phenotypes and differential intestinal flora in Bama pigs A. Female wild type and knockout muscle weight of Bama pigs; B. Lactobacillus of ileum in female Bama pigs; C. SMB53 of cecum in female Bama pigs; D. Male wild type and knockout muscle weight of Bama pigs; E. Prevotella of rectum in male Bama pigs; F. Ruminococcus of rectum in male Bama pigs; G. SMB53 of cecum in male Bama pigs"
1 |
LARSON G , DOBNEY K , ALBARELLA U , et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication[J]. Science, 2005, 307 (5715): 1618- 1621.
doi: 10.1126/science.1106927 |
2 |
GROSICKI G J , FIELDING R A , LUSTGARTEN M S . Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis[J]. Calcif Tissue Int, 2018, 102 (4): 433- 442.
doi: 10.1007/s00223-017-0345-5 |
3 |
TICINESI A , LAURETANI F , MILANI C , et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis?[J]. Nutrients, 2017, 9 (12): 1303.
doi: 10.3390/nu9121303 |
4 |
PETERSEN L M , BAUTISTA E J , NGUYEN H , et al. Community characteristics of the gut microbiomes of competitive cyclists[J]. Microbiome, 2017, 5 (1): 98.
doi: 10.1186/s40168-017-0320-4 |
5 |
LIU Z H , LIU H Y , ZHOU H B , et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice[J]. Front Microbiol, 2017, 8, 1687.
doi: 10.3389/fmicb.2017.01687 |
6 | LAMOUREUX E V , GRANDY S A , LANGILLE M G I . Moderate exercise has limited but distinguishable effects on the mouse microbiome[J]. mSystems, 2017, 2 (4): e00006- 17. |
7 | 严鸿林. 肠道微生物及其与营养互作对猪骨骼肌表型及代谢的调控[D]. 成都: 四川农业大学, 2018. |
YAN H L. Regulation of porcine skeletal muscle-phenotypes and metabolism by gut microbiota and its interaction with nutrition[D]. Chengdu: Sichuan Agricultural University, 2018. | |
8 |
LEE C C , LIAO Y C , LEE M C , et al. Lactobacillus plantarum TWK10 attenuates aging-associated muscle weakness, bone loss, and cognitive impairment by modulating the gut microbiome in mice[J]. Front Nutr, 2021, 8, 708096.
doi: 10.3389/fnut.2021.708096 |
9 |
LEE M C , HO C S , HSU Y J , et al. Live and heat-killed probiotic Lactobacillus paracasei PS23 accelerated the improvement and recovery of strength and damage biomarkers after exercise-induced muscle damage[J]. Nutrients, 2022, 14 (21): 4563.
doi: 10.3390/nu14214563 |
10 |
JEON J T , CARLBORG Ö , TÖRNSTEN A , et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus[J]. Nat Genet, 1999, 21 (2): 157- 158.
doi: 10.1038/5938 |
11 |
VAN LAERE A S , NGUYEN M , BRAUNSCHWEIG M , et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature, 2003, 425 (6960): 832- 836.
doi: 10.1038/nature02064 |
12 |
JUNGERIUS B J , VAN LAERE A S , TE PAS M F W , et al. The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan×European white pig intercross[J]. Genet Res, 2004, 84 (2): 95- 101.
doi: 10.1017/S0016672304007098 |
13 |
MARKLJUNG E , JIANG L , JAFFE J D , et al. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth[J]. PLoS Biol, 2009, 7 (12): e1000256.
doi: 10.1371/journal.pbio.1000256 |
14 |
HAYWARD A , GHAZAL A , ANDERSSON G , et al. ZBED evolution: repeated utilization of DNA transposons as regulators of diverse host functions[J]. PLoS One, 2013, 8 (3): e59940.
doi: 10.1371/journal.pone.0059940 |
15 | YOUNIS S , SCHÖNKE M , MASSART J , et al. The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals[J]. Proc Natl Acad Sci U S A, 2018, 115 (9): E2048- E2057. |
16 | LIU L , WANG S N , TIAN W J , et al. Effect of ZBED6 single-allele knockout on the growth and development of skeletal muscle in mice[J]. Biology (Basel), 2023, 12 (2): 325. |
17 |
WANG D D , PAN D K , XIE B C , et al. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets[J]. PLoS Genet, 2021, 17 (10): e1009862.
doi: 10.1371/journal.pgen.1009862 |
18 |
WANG X , JIANG L , WALLERMAN O , et al. Transcription factor ZBED6 affects gene expression, proliferation, and cell death in pancreatic beta cells[J]. Proc Natl Acad Sci U S A, 2013, 110 (40): 15997- 16002.
doi: 10.1073/pnas.1303625110 |
19 |
WANG S N , TIAN W J , PAN D K , et al. A comprehensive analysis of the myocardial transcriptome in ZBED6-Knockout Bama Xiang Pigs[J]. Genes (Basel), 2022, 13 (8): 1382.
doi: 10.3390/genes13081382 |
20 |
BOKULICH N A , KAEHLER B D , RIDEOUT J R , et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QⅡME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6 (1): 90.
doi: 10.1186/s40168-018-0470-z |
21 |
CALLAHAN B J , MCMURDIE P J , ROSEN M J , et al. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13 (7): 581- 583.
doi: 10.1038/nmeth.3869 |
22 |
DIXON P . VEGAN, a package of R functions for community ecology[J]. J Veg Sci, 2003, 14 (6): 927- 930.
doi: 10.1111/j.1654-1103.2003.tb02228.x |
23 |
LOVE M I , HUBER W , ANDERS S . Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15 (12): 550.
doi: 10.1186/s13059-014-0550-8 |
24 | MANDAL S , VAN TREUREN W , WHITE R A , et al. Analysis of composition of microbiomes: a novel method for studying microbial composition[J]. Microb Ecol Health Dis, 2015, 26, 27663. |
25 |
ROHART F , GAUTIER B , SINGH A , et al. mixOmics: an R package for 'omics feature selection and multiple data integration[J]. PLoS Comput Biol, 2017, 13 (11): e1005752.
doi: 10.1371/journal.pcbi.1005752 |
26 |
MO J L , GAO L , ZHANG N , et al. Structural and quantitative alterations of gut microbiota in experimental small bowel obstruction[J]. PLoS One, 2021, 16 (8): e0255651.
doi: 10.1371/journal.pone.0255651 |
27 |
BROWNE H P , FORSTER S C , ANONYE B O , et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation[J]. Nature, 2016, 533 (7604): 543- 546.
doi: 10.1038/nature17645 |
28 |
LYNCH J B , GONZALEZ E L , CHOY K , et al. Gut microbiota Turicibacter strains differentially modify bile acids and host lipids[J]. Nat Commun, 2023, 14 (1): 3669.
doi: 10.1038/s41467-023-39403-7 |
29 |
MARTÍNEZ I , STEGEN J C , MALDONADO-GÓMEZ M X , et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes[J]. Cell Rep, 2015, 11 (4): 527- 538.
doi: 10.1016/j.celrep.2015.03.049 |
30 |
CHEN L H , CHANG S S , CHANG H Y , et al. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (1): 515- 531.
doi: 10.1002/jcsm.12849 |
31 |
ISAACSON R , KIM H B . The intestinal microbiome of the pig[J]. Anim Health Res Rev, 2012, 13 (1): 100- 109.
doi: 10.1017/S1466252312000084 |
32 |
张贺, 徐荣莹, 苏勇, 等. 单胃动物肠道微生物研究进展[J]. 动物营养学报, 2020, 32 (10): 4674- 4685.
doi: 10.3969/j.issn.1006-267x.2020.10.019 |
ZHANG H , XU R Y , SU Y , et al. A review: gut microbiota in monogastric animals[J]. Chinese Journal of Animal Nutrition, 2020, 32 (10): 4674- 4685.
doi: 10.3969/j.issn.1006-267x.2020.10.019 |
|
33 |
计伟, 谢春艳, 赵艳平, 等. 乳酸菌的生物学功能及其在母猪和仔猪生产中的应用[J]. 动物营养学报, 2018, 30 (11): 4320- 4326.
doi: 10.3969/j.issn.1006-267x.2018.11.006 |
JI W , XIE C Y , ZHAO Y P , et al. Biological functions of Lactobacillus and its application in Sows' and Piglets' production[J]. Chinese Journal of Animal Nutrition, 2018, 30 (11): 4320- 4326.
doi: 10.3969/j.issn.1006-267x.2018.11.006 |
|
34 |
ALLEN J M , BERGMILLER M E , PENCE B D , et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice[J]. J Appl Physiol (1985), 2015, 118 (8): 1059- 1066.
doi: 10.1152/japplphysiol.01077.2014 |
35 |
GOMEZ A , PETRZELKOVA K J , BURNS M B , et al. Gut microbiome of coexisting BaAka pygmies and bantu reflects gradients of traditional subsistence patterns[J]. Cell Rep, 2016, 14 (9): 2142- 2153.
doi: 10.1016/j.celrep.2016.02.013 |
36 |
TETT A , PASOLLI E , MASETTI G , et al. Prevotella diversity, niches and interactions with the human host[J]. Nat Rev Microbiol, 2021, 19 (9): 585- 599.
doi: 10.1038/s41579-021-00559-y |
37 | SUN Y , SU Y , ZHU W Y . Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet[J]. Front Microbiol, 2016, 7, 779. |
38 |
WVST P K , HORN M A , DRAKE H L . Clostridiaceae and Enterobacteriaceae as active fermenters in earthworm gut content[J]. ISME J, 2011, 5 (1): 92- 106.
doi: 10.1038/ismej.2010.99 |
39 | LONG C X , WU J Q , TAN Z J , et al. Different intestinal microbiota with growth stages of three-breed hybrid pig[J]. BioMed Res Int, 2022, 2022, 5603451. |
40 |
CRESPO-PIAZUELO D , MIGURA-GARCIA L , ESTELLÉ J , et al. Association between the pig genome and its gut microbiota composition[J]. Sci Rep, 2019, 9 (1): 8791.
doi: 10.1038/s41598-019-45066-6 |
41 |
HORIE M , MIURA T , HIRAKATA S , et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice[J]. Exp Anim, 2017, 66 (4): 405- 416.
doi: 10.1538/expanim.17-0021 |
42 |
FARIA S L , SANTOS A , MAGRO D O , et al. Gut microbiota modifications and weight regain in morbidly obese women after Roux-en-Y gastric bypass[J]. Obes Surg, 2020, 30 (12): 4958- 4966.
doi: 10.1007/s11695-020-04956-9 |
[1] | Yunfang SONG, Hao CHENG, Luya FENG, Ping BAI, Yuankun DENG, Yaoyao XIA, Bi'e TAN, Jing WANG. Research Progress on the Mechanism of Nutrition Regulating Intestinal Immune Cell Activation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2846-2858. |
[2] | JI Peng, ZHANG Bin, ZHANG Chunyong, XING Xiaokun, YANG Jia, LIU Shaona, FANG Die, PAN Hongbin, ZHAO Yanguang, AN Qingcong. Effect of Dietary Supplementation of Lactoferrin on Intestinal Microbial Diversity of Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2942-2955. |
[3] | WANG Shengnan, WANG Dandan, TIAN Wenjie, PU Yabin, PAN Dengke, XING Xiangyang, MA Yuehui, JIANG Lin. Mechanism of ZBED6 Gene on Spleen Development of Bama Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2394-2405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||