Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (2): 494-503.doi: 10.11843/j.issn.0366-6964.2023.02.008
• REVIEW • Previous Articles Next Articles
HE Haojie, XUE Mei*, FENG Li*
Received:
2022-06-15
Online:
2023-02-23
Published:
2023-02-21
CLC Number:
HE Haojie, XUE Mei, FENG Li. Activation Mechanism of NLRP1 Inflammasome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 494-503.
[1] | THAISS C A, ZMORA N, LEVY M, et al. The microbiome and innate immunity[J]. Nature, 2016, 535(7610):65-74. |
[2] | DEMARIA O, CORNEN S, DAËRON M, et al. Harnessing innate immunity in cancer therapy[J]. Nature, 2019, 574(7776):45-56. |
[3] | LI D Y, WU M H. Pattern recognition receptors in health and diseases[J]. Sig Transduct Target Ther, 2021, 6(1):291. |
[4] | KANNEGANTI T D. Intracellular innate immune receptors:life inside the cell[J]. Immunol Rev, 2020, 297(1):5-12. |
[5] | DIAMOND M S, KANNEGANTI T D. Innate immunity:the first line of defense against SARS-CoV-2[J]. Nat Immunol, 2022, 23(2):165-176. |
[6] | FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6):1044-1066. |
[7] | BROZ P, DIXIT V M. Inflammasomes:mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7):407-420. |
[8] | SHI J J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665. |
[9] | KAYAGAKI N, STOWE I B, LEE B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575):666-671. |
[10] | BURDETTE B E, ESPARZA A N, ZHU H, et al. Gasdermin D in pyroptosis[J]. Acta Pharm Sin B, 2021, 11(9):2768-2782. |
[11] | MARTINON F, BURNS K, TSCHOPP J. The inflammasome:a molecular platform triggering activation of inflammatory caspases and processing of proIL-β[J]. Mol Cell, 2002, 10(2):417-426. |
[12] | SHAW M H, REIMER T, KIM Y G, et al. NOD-like receptors (NLRs):bona fide intracellular microbial sensors[J]. Curr Opin Immunol, 2008, 20(4):377-382. |
[13] | TING J P Y, LOVERING R C, ALNEMRI E S, et al. The NLR gene family:a standard nomenclature[J]. Immunity, 2008, 28(3):285-287. |
[14] | LUPFER C, KANNEGANTI T D. The expanding role of NLRs in antiviral immunity[J]. Immunol Rev, 2013, 255(1):13-24. |
[15] | DANIS J, MELLETT M. Nod-like receptors in host defence and disease at the epidermal barrier[J]. Int J Mol Sci, 2021, 22(9):4677. |
[16] | QIAN X K, ZHANG J, LI X D, et al. Research progress on dipeptidyl peptidase family:structure, function and xenobiotic metabolism[J]. Curr Med Chem, 2022, 29(12):2167-2188. |
[17] | BENTHAM A, BURDETT H, ANDERSON P A, et al. Animal NLRs provide structural insights into plant NLR function[J]. Ann Bot, 2017, 119(5):698-702. |
[18] | HU Z H, YAN C Y, LIU P Y, et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism[J]. Science, 2013, 341(6142):172-175. |
[19] | MOTTA V, SOARES F, SUN T, et al. NOD-like receptors:versatile cytosolic sentinels[J]. Physiol Rev, 2015, 95(1):149-178. |
[20] | LIU P, LU Z W, LIU L L, et al. NOD-like receptor signaling in inflammation-associated cancers:from functions to targeted therapies[J]. Phytomedicine, 2019, 64:152925. |
[21] | MASTERNAK K, MUHLETHALER-MOTTET A, VILLARD J, et al. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex[J]. Genes Dev, 2000, 14(9):1156-1166. |
[22] | MAIER J K X, LAHOUA Z, GENDRON N H, et al. The neuronal apoptosis inhibitory protein is a direct inhibitor of caspases 3 and 7[J]. J Neurosci, 2002, 22(6):2035-2043. |
[23] | DAVOODI J, GHAHREMANI M H, ES-HAGHI A, et al. Neuronal apoptosis inhibitory protein, NAIP, is an inhibitor of procaspase-9[J]. Int J Biochem Cell Biol, 2010, 42(6):958-964. |
[24] | SANNA M G, DA SILVA CORREIA J, DUCREY O, et al. IAP suppression of apoptosis involves distinct mechanisms:the TAK1/JNK1 signaling cascade and caspase inhibition[J]. Mol Cell Biol, 2002, 22(6):1754-1766. |
[25] | HAUSMANN A, BÖCK D, GEISER P, et al. Intestinal epithelial NAIP/NLRC4 restricts systemic dissemination of the adapted pathogen Salmonella typhimurium due to site-specific bacterial PAMP expression[J]. Mucosal Immunol, 2020, 13(3):530-544. |
[26] | CORREA R G, MILUTINOVIC S, REED J C. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases[J]. Biosci Rep, 2012, 32(6):597-608. |
[27] | VELLOSO F J, TROMBETTA-LIMA M, ANSCHAU V, et al. NOD-like receptors:major players (and targets) in the interface between innate immunity and cancer[J]. Biosci Rep, 2019, 39(4):BSR20181709. |
[28] | SCHRODER K, TSCHOPP J. The inflammasomes[J]. Cell, 2010, 140(6):821-832. |
[29] | TATTOLI I, CARNEIRO L A, JéHANNO M, et al. NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production[J]. EMBO Rep, 2008, 9(3):293-300. |
[30] | STOKMAN G, KORS L, BAKKER P J, et al. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity[J]. J Exp Med, 2017, 214(8):2405-2420. |
[31] | TSCHOPP J, MARTINON F, BURNS K. NALPs:a novel protein family involved in inflammation[J]. Nat Rev Mol Cell Biol, 2003, 4(2):95-104. |
[32] | YU C H, MOECKING J, GEYER M, et al. Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice[J]. J Mol Biol, 2018, 430(2):142-152. |
[33] | ZHONG F L, MAMAÏ O, SBORGI L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation[J]. Cell, 2016, 167(1):187-202. e17. |
[34] | CHAVARRÍA-SMITH J, MITCHELL P S, HO A M, et al. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation[J]. PLoS Pathog, 2016, 12(12):e1006052. |
[35] | FINGER J N, LICH J D, DARE L C, et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity[J]. J Biol Chem, 2012, 287(30):25030-25037. |
[36] | XUE Y S, ENOSI TUIPULOTU D, TAN W H, et al. Emerging activators and regulators of inflammasomes and pyroptosis[J]. Trends Immunol, 2019, 40(11):1035-1052. |
[37] | D'OSUALDO A, WEICHENBERGER C X, WAGNER R N, et al. CARD8 and NLRP1 undergo autoproteolytic processing through a ZU5-like domain[J]. PLoS One, 2011, 6(11):e27396. |
[38] | FAUSTIN B, LARTIGUE L, BRUEY J M, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation[J]. Mol Cell, 2007, 25(5):713-724. |
[39] | LILUE J, DORAN A G, FIDDES I T, et al. Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci[J]. Nat Genet, 2018, 50(11):1574-1583. |
[40] | CHAVARRÍA-SMITH J, VANCE R E. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor[J]. PLoS Pathog, 2013, 9(6):e1003452. |
[41] | ROBERTS J E, WATTERS J W, BALLARD J D, et al. Ltx1, a mouse locus that influences the susceptibility of macrophages to cytolysis caused by intoxication with Bacillus anthracis lethal factor, maps to chromosome 11[J]. Mol Microbiol, 1998, 29(2):581-591. |
[42] | WICKLIFFE K E, LEPPLA S H, MOAYERI M. Killing of macrophages by anthrax lethal toxin:involvement of the N-end rule pathway[J]. Cell Microbiol, 2008, 10(6):1352-1362. |
[43] | BOYDEN E D, DIETRICH W F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin[J]. Nat Genet, 2006, 38(2):240-244. |
[44] | LEVINSOHN J L, NEWMAN Z L, HELLMICH K A, et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome[J]. PLoS Pathog, 2012, 8(3):e1002638. |
[45] | CHUI A J, OKONDO M C, RAO S D, et al. N-terminal degradation activates the NLRP1B inflammasome[J]. Science, 2019, 364(6435):82-85. |
[46] | SANDSTROM A, MITCHELL P S, GOERS L, et al. Functional degradation:a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes[J]. Science, 2019, 364(6435):eaau1330. |
[47] | TAABAZUING C Y, GRISWOLD A R, BACHOVCHIN D A. The NLRP1 and CARD8 inflammasomes[J]. Immunol Rev, 2020, 297(1):13-25. |
[48] | MITCHELL P S, SANDSTROM A, VANCE R E. The NLRP1 inflammasome:new mechanistic insights and unresolved mysteries[J]. Curr Opin Immunol, 2019, 60:37-45. |
[49] | WILSON C H, ZHANG H E, GORRELL M D, et al. Dipeptidyl peptidase 9 substrates and their discovery:current progress and the application of mass spectrometry-based approaches[J]. Biol Chem, 2016, 397(9):837-856. |
[50] | OKONDO M C, JOHNSON D C, SRIDHARAN R, et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis[J]. Nat Chem Biol, 2017, 13(1):46-53. |
[51] | OKONDO M C, RAO S D, TAABAZUING C Y, et al. Inhibition of Dpp8/9 activates the Nlrp1b inflammasome[J]. Cell Chem Biol, 2018, 25(3):262-267. e5. |
[52] | ZHONG F L, ROBINSON K, TEO D E T, et al. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding[J]. J Biol Chem, 2018, 293(49):18864-18878. |
[53] | GRISWOLD A R, CIFANI P, RAO S D, et al. A chemical strategy for protease substrate profiling[J]. Cell Chem Biol, 2019, 26(6):901-907. e6. |
[54] | JOHNSON D C, TAABAZUING C Y, OKONDO M C, et al. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia[J]. Nat Med, 2018, 24(8):1151-1156. |
[55] | HUANG M H, ZHANG X X, TOH G A, et al. Structural and biochemical mechanisms of NLRP1 inhibition by DPP9[J]. Nature, 2021, 592(7856):773-777. |
[56] | HOLLINGSWORTH L R, SHARIF H, GRISWOLD A R, et al. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation[J]. Nature, 2021, 592(7856):778-783. |
[57] | CIRELLI K M, GORFU G, HASSAN M A, et al. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii[J]. PLoS Pathog, 2014, 10(3):e1003927. |
[58] | EWALD S E, CHAVARRIA-SMITH J, BOOTHROYD J C. NLRP1 is an inflammasome sensor for Toxoplasma gondii[J]. Infect Immun, 2014, 82(1):460-468. |
[59] | WITOLA W H, MUI E, HARGRAVE A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells[J]. Infect Immun, 2011, 79(2):756-766. |
[60] | GORFU G, CIRELLI K M, MELO M B, et al. Dual role for inflammasome sensors NLRP1 and NLRP3 in murine resistance to Toxoplasma gondii[J]. mBio, 2014, 5(1):e01117-13. |
[61] | ZHU L J, QI W J, YANG G, et al. Toxoplasma gondii rhoptry protein 7 (ROP7) interacts with NLRP3 and promotes inflammasome hyperactivation in THP-1-derived macrophages[J]. Cells, 2022, 11(10):1630. |
[62] | DUNCAN J A, BERGSTRALH D T, WANG Y H, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling[J]. Proc Natl Acad Sci U S A, 2007, 104(19):8041-8046. |
[63] | LIAO K C, MOGRIDGE J. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP[J]. Infect Immun, 2013, 81(2):570-579. |
[64] | ROBINSON K S, TEO D E T, TAN K S, et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia[J]. Science, 2020, 370(6521):eaay2002. |
[65] | TSU B V, BEIERSCHMITT C, RYAN A P, et al. Diverse viral proteases activate the NLRP1 inflammasome[J]. Elife, 2021, 10:e60609. |
[66] | NOZAKI K, LI L P, MIAO E A. Innate sensors trigger regulated cell death to combat intracellular infection[J]. Ann Rev Immunol, 2022, 40:469-498. |
[67] | PLANōS R, PINILLA M, SANTONI K, et al. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells[J]. Mol Cell, 82(13):2385-2400. |
[68] | WANG Q K, GAO H B, CLARK K M, et al. CARD8 is an inflammasome sensor for HIV-1 protease activity[J]. Science, 2021, 371(6535):eabe1707. |
[69] | HOLLINGSWORTH L R, DAVID L, LI Y, et al. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes[J]. Nat Commun, 2021, 12(1):189. |
[70] | YANG X, ZHOU J F, LIU C R, et al. KSHV-encoded ORF45 activates human NLRP1 inflammasome[J]. Nat Immunol, 2022, 23(6):916-926. |
[71] | BAUERNFRIED S, SCHERR M J, PICHLMAIR A, et al. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528):eabd0811. |
[72] | TUPIK J D, NAGAI-SINGER M A, ALLEN I C. To protect or adversely affect?The dichotomous role of the NLRP1 inflammasome in human disease[J]. Mol Aspects Med, 2020, 76:100858. |
[73] | ALEHASHEMI S, GOLDBACH-MANSKY R. Human autoinflammatory diseases mediated by NLRP3-, Pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18[J]. Front Immunol, 2020, 11:1840. |
[74] | SAND J, FENINI G, GROSSI S, et al. The NLRP1 inflammasome pathway is silenced in cutaneous squamous cell carcinoma[J]. J Invest Dermatol, 2019, 139(8):1788-1797. e6. |
[75] | FENINI G, KARAKAYA T, HENNIG P, et al. The NLRP1 inflammasome in human skin and beyond[J]. Int J Mol Sci, 2020, 21(13):4788. |
[76] | YAP J K Y, PICKARD B S, CHAN E W L, et al. The role of neuronal NLRP1 inflammasome in Alzheimer's disease:bringing neurons into the neuroinflammation game[J]. Mol Neurobiol, 2019, 56(11):7741-7753. |
[77] | MULLARD A. NLRP3 inhibitors stoke anti-inflammatory ambitions[J]. Nat Rev Drug Discov, 2019, 18(6):405-407. |
[78] | DE BRITO TOSCANO E C, ROCHA N P, LOPES B N A, et al. Neuroinflammation in Alzheimer's disease:focus on NLRP1 and NLRP3 inflammasomes[J]. Curr Protein Pept Sci, 2021, 22(8):584-598. |
[79] | WANG P H, ZHU S, YANG L, et al. Nlrp6 regulates intestinal antiviral innate immunity[J]. Science, 2015, 350(6262):826-830. |
[1] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[2] | YU Zuhua, GAO Mengru, QI Zhiying, ZHANG Jingyu, HE Lei, CHEN Jian, DING Ke. Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation of Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. |
[3] | HUANG Jin, LI Siyuan, MAO Li, CAI Xuhang, XIE Lingling, WANG Fu, ZHOU Hua, LI Jizong, LI Bin. Eukaryotic Expression of Bovine Coronavirus S1 Protein and Establishment and Application of Indirect ELISA [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2050-2060. |
[4] | HAN Yang, GUAN Shuaiyin, LI Zhen, ZHOU Saisai, YUAN Honggen, SONG Yunfeng. Prokaryotic Expression and Protein Activity of Porcine Circovirus Type 3 Rep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2061-2071. |
[5] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
[6] | XU Hong, SHANG Hongqi, ZHANG Xue, QIAN Jiali, WANG Chuanhong, SONG Xu, BAO Meiying, LIU Shiyu, ZHANG Gege, GUO Rongli, ZHAO Yongxiang, FAN Baochao, LI Bin. Inhibition Effect of C8orf4 Gene Encoding Protein on in vitro Replication of Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2100-2108. |
[7] | XIONG Ting, HE Xianming, ZHAO Xiya, ZHUANG Tingting, HUANG Meizhen, LIANG Shijin, YU Chuanzhao, LIANG Xuejing, CHEN Ruiai. Whole Genome Analysis of Three Predominant Epidemic Strains of Chicken Infectious Bronchitis Virus and Their Pathogenicity [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2109-2122. |
[8] | LÜ Yadi, YANG Jie, XIE Wenting, XU Ting, CHEN Ruiai. Construction and Evaluation of the Immune Effect of Recombinant Genotype Ⅶ NDV Strain Co-expressing Membrane-bound and Water-soluble HA Protein of Avian Influenza Virus H9N2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2123-2134. |
[9] | WANG Jing, ZHANG Shujuan, HU Xia, LIU Xiangyang, ZHANG Xingcui, SONG Zhenhui. CD44 Regulates Na+/H+ Exchanger 3 Activity by Influencing Porcine Epidemic Diarrhea Virus Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2176-2185. |
[10] | ZHANG Ying, SONG Chunlian, ZHANG Ying, SHEN Hong, SHU Xianghua, YANG Honggui. Study on the Damage of Blood-brain Barrier by Tight Junction Protein Mediated by MMP-9 in Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2186-2194. |
[11] | LI Pengfei, GAO Guiqin, ZHOU Guangqing, WU Jinyan, YAN Xinmin, CAO Xiaoan, HE Jijun, YUAN Ligang, SHANG Youjun. Establishment and Application of TaqMan Fluorescence Quantitative RT-PCR Detection Method for Enzootic Nasal Tumor Virus of Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2259-2266. |
[12] | HU Zeqi, LI Runcheng, TAN Zuming, XIE Xiuyan, WANG Jiangping, QIN Lejuan, LI Rong, GE Meng. Establishment and Preliminary Application of PEDV, PoRVA and PDCoV TaqMan Triple RT-qPCR Assay [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2267-2272. |
[13] | GUO Xuelian, LI Yongqin, LI Ruiqian, LI Hao, JIN Shuangyuan, WANG Xueyan, DU Jiawei, XU Lihua. Biological Functions of Bovine Respiratory Syncytial Virus G and F Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1478-1487. |
[14] | LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498. |
[15] | LIN Lili, ZHANG Mengdi, ZHU Linlin, MA Hailong, SUN Qi, HE Qigai, ZHANG Mengjia, LI Wentao. Establishment of Neutralizing Antibody Detection Method based on Recombinant Fluorescent Virus of Porcine Epidemic Diarrhea Virus GⅡb Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1649-1660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||