Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (1): 80-87.doi: 10.11843/j.issn.0366-6964.2023.01.008
• REVIEW • Previous Articles Next Articles
CHEN Xiangning, LIU Mengmeng*
Received:
2022-06-16
Online:
2023-01-23
Published:
2023-01-17
CLC Number:
CHEN Xiangning, LIU Mengmeng. Hypertrophic Cardiomyopathy and Myocardial Fibrosis in Cats[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 80-87.
[1] | MACDONALD K A, KITTLESON M D, LARSON R F, et al. The effect of ramipril on left ventricular mass, myocardial fibrosis, diastolic function, and plasma neurohormones in maine coon cats with familial hypertrophic cardiomyopathy without heart failure[J]. J Vet Intern Med, 2006, 20(5):1093-1105. |
[2] | FREEMAN L M, RUSH J E, STERN J A, et al. Feline hypertrophic cardiomyopathy:a spontaneous large animal model of human HCM[J]. Cardiol Res, 2017, 8(4):139-142. |
[3] | WILKIE L J, SMITH K, FUENTES V L. Cardiac pathology findings in 252 cats presented for necropsy; a comparison of cats with unexpected death versus other deaths[J]. J Vet Cardiol, 2015, 17 Suppl 1:S329-S340. |
[4] | NGUYEN T P, QU Z L, WEISS J N. Cardiac fibrosis and arrhythmogenesis:The road to repair is paved with perils[J]. J Mol Cell Cardiol, 2014, 70:83-91. |
[5] | FOX P R, KEENE B W, LAMB K, et al. International collaborative study to assess cardiovascular risk and evaluate long-term health in cats with preclinical hypertrophic cardiomyopathy and apparently healthy cats:the REVEAL study[J]. J Vet Intern Med, 2018, 32(3):930-943. |
[6] | PAYNE J R, BRODBELT D C, FUENTES V L. Cardiomyopathy prevalence in 780 apparently healthy cats in rehoming centres (the CatScan study)[J]. J Vet Cardiol, 2015, 17 Suppl 1:S244-S257. |
[7] | TREHIOU-SECHI E, TISSIER R, GOUNI V, et al. Comparative echocardiographic and clinical features of hypertrophic cardiomyopathy in 5 breeds of cats:a retrospective analysis of 344 cases (2001-2011)[J]. J Vet Intern Med, 2012, 26(3):532-541. |
[8] | MEURS K M, NORGARD M M, EDERER M M, et al. A substitution mutation in the myosin binding protein C gene in ragdoll hypertrophic cardiomyopathy[J]. Genomics, 2007, 90(2):261-264. |
[9] | BORGEAT K, CASAMIAN-SORROSAL D, Helps C, et al. Association of the myosin binding protein C3 mutation (MYBPC3 R820 W) with cardiac death in a survey of 236 Ragdoll cats[J]. J Vet Cardiol, 2014, 16(2):73-80. |
[10] | GRANSTRÖM S, GODIKSEN M T N, CHRISTIANSEN M, et al. Prevalence of hypertrophic cardiomyopathy in a cohort of British shorthair cats in Denmark[J]. J Vet Intern Med, 2011, 25(4):866-871. |
[11] | CHETBOUL V, PETIT A, GOUNI V, et al. Prospective echocardiographic and tissue Doppler screening of a large Sphynx cat population:Reference ranges, heart disease prevalence and genetic aspects[J]. J Vet Cardiol, 2012, 14(4):497-509. |
[12] | MÄRZ I, WILKIE L J, HARRINGTON N, et al. Familial cardiomyopathy in Norwegian Forest cats[J]. J Feline Med Surg, 2015, 17(8):681-691. |
[13] | MEURS K M, SANCHEZ X, DAVID R M, et al. A cardiac myosin binding protein C mutation in the Maine Coon cat with familial hypertrophic cardiomyopathy[J]. Hum Mol Genet, 2005, 14(23):3587-3593. |
[14] | NOVO MATOS J, PEREIRA N, GLAUS T, et al. Transient myocardial thickening in cats associated with heart failure[J]. J Vet Intern Med, 2018, 32(1):48-56. |
[15] | LUIS FUENTES V, ABBOTT J, CHETBOUL V, et al. ACVIM consensus statement guidelines for the classification, diagnosis, and management of cardiomyopathies in cats[J]. J Vet Intern Med, 2020, 34(3):1062-1077. |
[16] | ELLIOTT P, MCKENNA W J. Hypertrophic cardiomyopathy[J]. Lancet, 2004, 363(9424):1881-1891. |
[17] | AMBERGER C N, GLARDON O, GLAUS T, et al. Effects of benazepril in the treatment of feline hypertrophic cardiomyopathy Results of a prospective, open-label, multicenter clinical trial[J]. J Vet Cardiol, 1999, 1(1):19-26. |
[18] | KING J N, MARTIN M, CHETBOUL V, et al. Evaluation of benazepril in cats with heart disease in a prospective, randomized, blinded, placebo-controlled clinical trial[J]. J Vet Intern Med, 2019, 33(6):2559-2571. |
[19] | HOGAN D F. Feline cardiogenic arterial thromboembolism:prevention and therapy[J]. Vet Clin North Am Small Anim Pract, 2017, 47(5):1065-1082. |
[20] | HOGAN D F, FOX P R, JACOB K, et al. Secondary prevention of cardiogenic arterial thromboembolism in the cat:the double-blind, randomized, positive-controlled feline arterial thromboembolism; clopidogrel vs. aspirin trial (FAT CAT)[J]. J Vet Cardiol, 2015, 17:S306-S317. |
[21] | GREEN E M, WAKIMOTO H, ANDERSON R L, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice[J]. Science, 2016, 351(6273):617-621. |
[22] | STERN J A, MARKOVA S, UEDA Y, et al. A small molecule inhibitor of sarcomere contractility acutely relieves left ventricular outflow tract obstruction in feline hypertrophic cardiomyopathy[J]. PLoS One, 2016, 11(12):e0168407. |
[23] | OLIVOTTO I, OREZIAK A, BARRIALES-VILLA R, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM):a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet, 2020, 396(10253):759-769. |
[24] | FERGUSON B S, STERN J A, OLDACH M S, et al. Acute effects of a mavacamten-like myosin-inhibitor (MYK-581 in a feline model of obstructed hypertrophic cardiomyopathy:evidence of improved ventricular filling (beyond obstruction reprieve)[J]. Eur Heart J, 2020, 41(S2):ehaa946. 3713. |
[25] | HO C Y, LÓPEZ B, COELHO-FILHO O R, et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy[J]. N Engl J Med, 2010, 363(6):552-563. |
[26] | DAVIES M J, MCKENNA W J. Hypertrophic cardiomyopathy-pathology and pathogenesis[J]. Histopathology, 1995, 26(6):493-500. |
[27] | MEWTON N, LIU C Y, CROISILLE P, et al. Assessment of myocardial fibrosis with cardiovascular magnetic resonance[J]. J Am Coll Cardiol, 2011, 57(8):891-903 |
[28] | KARAMITSOS T D, ARVANITAKI A, KARVOUNIS H, et al. Myocardial tissue characterization and fibrosis by imaging[J]. JACC Cardiovasc Imag, 2020, 13(5):1221-1234. |
[29] | KHOR K H, CAMPBELL F E, OWEN H, et al. Myocardial collagen deposition and inflammatory cell infiltration in cats with pre-clinical hypertrophic cardiomyopathy[J]. Vet J, 2015, 203(2):161-168. |
[30] | KITZ S, FONFARA S, HAHN S, et al. Feline hypertrophic cardiomyopathy:the consequence of cardiomyocyte-initiated and macrophage-driven remodeling processes?[J]. Vet Pathol, 2019, 56(4):565-575. |
[31] | NOVO MATOS J, GARCIA-CANADILLA P, SIMCOCK I C, et al. Micro-computed tomography (micro-CT) for the assessment of myocardial disarray, fibrosis and ventricular mass in a feline model of hypertrophic cardiomyopathy[J]. Sci Rep, 2020, 10(1):20169. |
[32] | CESTA M F, BATY C J, KEENE B W, et al. Pathology of end-stage remodeling in a family of cats with hypertrophic cardiomyopathy[J]. Vet Pathol, 2005, 42(4):458-467. |
[33] | BIASATO I, FRANCESCONE L, LA ROSA G, et al. Anatomopathological staging of feline hypertrophic cardiomyopathy through quantitative evaluation based on morphometric and histopathological data[J]. Res Vet Sci, 2015, 102:136-141. |
[34] | CHRISTIANSEN L B, PRATS C, HYTTEL P, et al. Ultrastructural myocardial changes in seven cats with spontaneous hypertrophic cardiomyopathy[J]. J Vet Cardiol, 2015, 17 Suppl 1:S220-S232. |
[35] | GALLO E M, LOCH D C, HABASHI J P, et al. Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis[J]. J Clin Invest, 2014, 124(1):448-460. |
[36] | LANG C C, STRUTHERS A D. Targeting the renin-angiotensin-aldosterone system in heart failure[J]. Nat Rev Cardiol, 2013, 10(3):125-134. |
[37] | LI Y, CAI X J, GUAN Y Q, et al. Adiponectin upregulates MiR-133a in cardiac hypertrophy through AMPK activation and reduced ERK1/2 phosphorylation[J]. PLoS One, 2016, 11(2):e0148482. |
[38] | YANG T, CHEN Y Y, LIU J R, et al. Natural products against renin-angiotensin system for antifibrosis therapy[J]. Eur J Med Chem, 2019, 179:623-633. |
[39] | AMES M K, ATKINS C E, PITT B. The renin-angiotensin-aldosterone system and its suppression[J]. J Vet Intern Med, 2019, 33(2):363-382. |
[40] | SEIFARTH C, TRENKEL S, SCHOBEL H, et al. Influence of antihypertensive medication on aldosterone and renin concentration in the differential diagnosis of essential hypertension and primary aldosteronism[J]. Clin Endocrinol, 2002, 57(4):457-465. |
[41] | GRAY M O, LONG C S, KALINYAK J E, et al. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts[J]. Cardiovasc Res, 1998, 40(2):352-363. |
[42] | CAMPBELL S E, KATWA L C. Angiotensin II stimulated expression of transforming growth factor-β1 in cardiac fibroblasts and myofibroblasts[J]. J Mol Cell Cardiol, 1997, 29(7):1947-1958. |
[43] | RUBTSOV Y P, RUDENSKY A Y. TGFβ signalling in control of T-cell-mediated self-reactivity[J]. Nat Rev Immunol, 2007, 7(6):443-453. |
[44] | ROLDN V, MARÍN F, GIMENO J R, et al. Matrix metalloproteinases and tissue remodeling in hypertrophic cardiomyopathy[J]. Am Heart J, 2008, 156(1):85-91. |
[45] | BUJAK M, FRANGOGIANNIS N G. The role of TGF-β signaling in myocardial infarction and cardiac remodeling[J]. Cardiovasc Res, 2007, 74(2):184-195. |
[46] | KOITABASHI N, DANNER T, ZAIMAN A L, et al. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload[J]. J Clin Invest, 2011, 121(6):2301-2312. |
[47] | FUJIO K, KOMAI T, INOUE M, et al. Revisiting the regulatory roles of the TGF-β family of cytokines[J]. Autoimmun Rev, 2016, 15(9):917-922. |
[48] | KHALIL H, KANISICAK O, PRASAD V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis[J]. J Clin Invest, 2017, 127(10):3770-3783. |
[49] | YUE Y Y, MENG K, PU Y J, et al. Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy[J]. Diabetes Res Clin Pract, 2017, 133:124-130. |
[50] | YUAN M, HAI Z, ZHU X X, et al. Transforming growth factor β:A potential biomarker and therapeutic target of ventricular remodeling[J]. Oncotarget, 2017, 8(32):53780-53790. |
[51] | AUPPERLE H, BALDAUF K, MÄRZ I. An immunohistochemical study of feline myocardial fibrosis[J]. J Comparat Pathol, 2011, 145(2-3):158-173. |
[52] | FONFARA S, HETZEL U, HAHN S, et al. Age-and gender-dependent myocardial transcription patterns of cytokines and extracellular matrix remodelling enzymes in cats with non-cardiac diseases[J]. Exp Gerontol, 2015, 72:117-123. |
[53] | COLSTON J T, BOYLSTON W H, FELDMAN M D, et al. Interleukin-18 knockout mice display maladaptive cardiac hypertrophy in response to pressure overload[J]. Biochem Biophys Res Commun, 2007, 354(2):552-558. |
[54] | YU Q L, VAZQUEZ R, KHOJEINI E V, et al. IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice[J]. Am J Physiol Heart Circulat Physiol, 2009, 297(1):H76-H85. |
[55] | HEDAYAT M, MAHMOUDI M J, ROSE N R, et al. Proinflammatory cytokines in heart failure:double-edged swords[J]. Heart Fail Rev, 2010, 15(6):543-562. |
[56] | FIX C, BINGHAM K, CARVER W. Effects of interleukin-18 on cardiac fibroblast function and gene expression[J]. Cytokine, 2011, 53(1):19-28. |
[57] | PAYNE J, LUIS FUENTES V, BOSWOOD A, et al. Population characteristics and survival in 127 referred cats with hypertrophic cardiomyopathy (1997 to 2005)[J]. J Small Anim Pract, 2010, 51(10):540-547. |
[58] | MANABE I, SHINDO T, NAGAI R. Gene expression in fibroblasts and fibrosis:involvement in cardiac hypertrophy[J]. Circul Res, 2002, 91(12):1103-1113. |
[59] | CUI N, HU M, KHALIL R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Progr Mol Biol Trans Sci, 2017, 147:1-73. |
[60] | SEGURA A M, FRAZIER O H, BUJA L M. Fibrosis and heart failure[J]. Heart Fail Rev, 2014, 19(2):173-185. |
[61] | KOGA M, KURAMOCHI M, KARIM M R, et al. Immunohistochemical characterization of myofibroblasts appearing in isoproterenol-induced rat myocardial fibrosis[J]. J Vet Med Sci, 2019, 81(1):127-133. |
[62] | LIU W Y, SUN H H, SUN P F. MicroRNA-378 attenuates myocardial fibrosis by inhibiting MAPK/ERK pathway[J]. Eur Rev Med Pharmacol Sci, 2019, 23(10):4398-4405. |
[63] | WEBER K, ROSTERT N, BAUERSACHS S, et al. Serum microRNA profiles in cats with hypertrophic cardiomyopathy[J]. Mol Cell Biochem, 2015, 402(1):171-180. |
[64] | MITCHELL P S, PARKIN R K, KROH E M, et al. Circulating microRNAs as stable blood-based markers for cancer detection[J]. Proc Natl Acad Sci USA, 2008, 105(30):10513-10518. |
[65] | BOMBACK A S, REKHTMAN Y, KLEMMER P J, et al. Aldosterone breakthrough during aliskiren, valsartan, and combination (aliskiren+valsartan) therapy[J]. J Am Soc Hypertens, 2012, 6(5):338-345. |
[66] | CHEN H, LI M, LIU L, et al. Telmisartan improves myocardial remodeling by inhibiting leptin autocrine activity and activating PPARγ[J]. Exp Biol Med, 2020, 245(7):654-666. |
[67] | TSYBOULEVA N, ZHANG L F, CHEN S, et al. Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy[J]. Circulation, 2004, 109(10):1284-1291. |
[68] | MACDONALD K A, KITTLESON M D, KASS P H. Effect of spironolactone on diastolic function and left ventricular mass in Maine Coon cats with familial hypertrophic cardiomyopathy[J]. J Vet Intern Med, 2008, 22(2):335-341. |
[69] | LÓPEZ B, QUEREJETA R, GONZLEZ A, et al. Impact of treatment on myocardial Lysyl oxidase expression and collagen cross-linking in patients with heart failure[J]. Hypertension, 2009, 53(2):236-242. |
[70] | POISSONNIER C, GHAZAL S, PASSAVIN P, et al. Tolerance of torasemide in cats with congestive heart failure:a retrospective study on 21 cases (2016-2019)[J]. BMC Vet Res, 2020, 16(1):339. |
[71] | 曹蕾, 刘乃丰. 他汀类药物干预心肌纤维化的机制[J]. 东南大学学报:医学版, 2012, 31(4):496-500.CAO L, LIU N F. Mechanism of statin intervention on myocardial fibrosis[J]. J Southeast Univ:Med Ed, 2012, 31(4):496-500. (in Chinese) |
[72] | MARTIN J, DENVER R, BAILEY M, et al. In vitro inhibitory effects of atorvastatin on cardiac fibroblasts:Implications for ventricular remodelling[J]. Clin Exp Pharmacol Physiol, 2005, 32(9):697-701. |
[73] | GELLIBERT F, DE GOUVILLE A C, WOOLVEN J, et al. Discovery of 4-{4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H-pyran-4-yl)benzamide (GW788388):a potent, selective, and orally active transforming growth factor-β type I receptor inhibitor[J]. J Med Chem, 2006, 49(7):2210-2221. |
[74] | LIU C H, LIM S T, TEO M H Y, et al. Collaborative regulation of LRG1 by TGF-β1 and PPAR-β/δ modulates chronic pressure overload-induced cardiac fibrosis[J]. Circul Heart Fail, 2019, 12(12):e005962. |
[75] | LIU M M, KÖSTER L S, FOSGATE G T, et al. Cardiovascular-renal axis disorder and acute-phase proteins in cats with congestive heart failure caused by primary cardiomyopathy[J]. J Vet Intern Med, 2020, 34(3):1078-1090. |
[76] | YU Y H, ZHANG Y H, DING Y Q, et al. MicroRNA-99b-3p promotes angiotensin II-induced cardiac fibrosis in mice by targeting GSK-3β[J]. Acta Pharmacol Sin, 2021, 42(5):715-725. |
[77] | JIANG W Y, XIONG Y Y, LI X S, et al. Cardiac fibrosis:cellular effectors, molecular pathways, and exosomal roles[J]. Front Cardiovasc Med, 2021, 8:715258. |
[78] | 陆莹, 彭金咏. 抗心肌纤维化天然产物的研究进展[J]. 中国现代应用药学, 2021, 38(6):762-768.LU Y, PENG J Y. Advance on natural products against myocardial fibrosis[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(6):762-768. (in Chinese). |
[1] | GUO Yunpeng, NIU Dun, LI Shuang, JIANG Xinghao, ZHANG Lixia, REN Guiping, YIN Jiechao. Study of Long-lasting Hypoglycemic Effect of Canine Fibroblast Growth Factor 21 Using a Mice Model with Type 1 Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 770-784. |
[2] | ZHANG Peng, WANG Mingxiu, JING Kemin, PENG Wei, TIAN Yuan, LI Yuqian, FU Changqi, SHU Shi, ZHONG Jincheng, CAI Xin. Abnormal Expression of FGFs/FGFRs and Their Mediated Signaling Pathway Genes Affect the Proliferative Activity of Undifferentiated Spermatogonia in Cattleyak [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2886-2897. |
[3] | ZHANG Kaizhao, HU Hui, XU Zekai, WANG Shiqian, CUI Hongjie, HUANG Xiaohong. Toxicity of Zearalenone on Chicken Embryo Fibroblasts [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1615-1625. |
[4] | ZHAO Fengqin, ZHOU Lei, WANG Zhiyue, SUN Dongyu, PIAO Jun, PIAO Jing'ai, JIN Mei. Toxic Effects of Dimethyl Arsenic Acid on Skin Fibroblasts of Liaoning Cashmere Goats and the Mechanism of Inducing Cell Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 1845-1857. |
[5] | LI Yuejiao, CUI Yan, ZHANG Qian, HE Junfeng. Study on the Distribution and Expression of CTGF and FGF-2 in the Lungs of Yaks at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 2025-2033. |
[6] | ZHANG Dajun, HOU Jing, SHEN Chaochao, XU Guowei, KONG Hanjin, CHENG Weiwei, ZHENG Haixue, LIU Xiangtao, ZHANG Keshan. Differential Expression Analysis of miRNA from Orf Virus Infected and Uninfected Goat Skin Fibroblast Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1932-1938. |
[7] | ZHANG Jing-jing, WANG De-guang, ZHOU Xiao-bing, GAO Ye, HE Xiao-lin, CHEN Yu-lin, ZHANG En-ping. Effect of VEGF on Secondary Hair Follicle Outer Root Sheath Cells of Cashmere Goat in vitro [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(6): 1124-1133. |
[8] | XIE Jun, SUN Ying-jie, ZHOU Chang-luan, ZHU Shan-yuan, DING Chan, BAI Jia-lin. The Effect of Co-infection of H9N2 Subtype Avian Influenza Virus and Newcastle Disease Virus on Virus Replication in the DF-1 of Chicken Embryo Fibroblasts [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(11): 2521-2528. |
[9] | LIU Zi-fei, DENG Ming-tian, REN Cai-fang, WAN Yong-jie, WANG Feng. IGF2-H19 Locus Methylation Status in Cloned Goat Fibroblast Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(12): 2277-2285. |
[10] | YANG Bin,XU Dan-dan,SUN Zhi-peng,ZHAO Jia-qi,YAN Bo-wei,LI Xiao-ting,WU Rui. The Effect of Staphylococcus aureus on TGF-β1/Smad Signaling Pathway and Transdifferentiation in Bovine Mammary Fibroblasts [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(7): 1495-1501. |
[11] | WEI Ru-xue,ZHAO Xue-ming,HAO Hai-sheng,DU Wei-hua,ZHU Hua-bin. Isolation,Culture and Identification of Rabbit Embryonic Fibroblasts [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(6): 1272-1279. |
[12] | SUN Hong-xin,WANG Hong-na,ZHANG Ying-jie,LIU Yue-qin,CHEN Xiao-yong,DUN Wei-tao. Cloning and Expression of BMPR-IB Gene in Cashmere Goat Fibroblast Cells [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(6): 1124-1132. |
[13] | YUE Min,TIAN Yu-guang,WAN Bin,PANG Wei,WU Qing-hong,WANG Yu-jue. The Impact of GHR Mutation on Suppressing the Growth in Tibet Mini-pig [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(5): 882-887. |
[14] | DU Wei-hua,FAN Zong-xing,WANG Hao-yu,HAO Hai-sheng,LIU Yan,ZHAO Xue-ming,QIN Tong,ZHU Hua-bin. Reprogramming of Japanese Black Cattle Fetal Fibroblasts Treated with Xenopus laevis Oocytes Extracts [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2015, 46(9): 1549-1556. |
[15] | PI Wen-hui,ZHOU Ping,WANG Li-min,TANG Hong,GUO Yan-hua,ZHANG Yi-yuan,LIU Shou-ren,WANG Xin-hua. Editing Fibroblast Growth Factor 5 Gene in Ovine Fibroblasts Using TALENs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2015, 46(5): 704-710. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||