| [1] | 
																						 
											STRUBE C, HEUER L, JANECEK E. Toxocara spp. infections in paratenic hosts[J]. Vet Parasitol, 2013, 193(4):375-389.
																						 | 
										
																													
																							| [2] | 
																						 
											SAHU S, SAMANTA S, SUDHAKAR N R, et al. Prevalence of canine toxocariasis in Bareilly, Uttar Pradesh, India[J]. J Parasit Dis, 2014, 38(1):111-115.
																						 | 
										
																													
																							| [3] | 
																						 
											SUGANYA G, PORTEEN K, SEKAR M, et al. Prevalence and molecular characterization of zoonotic helminths in dogs[J]. J Parasit Dis, 2019, 43(1):96-102.
																						 | 
										
																													
																							| [4] | 
																						 
											DESPOMMIER D. Toxocariasis:clinical aspects, epidemiology, medical ecology, and molecular aspects[J]. Clin Microbiol Rev, 2003, 16(2):265-272.
																						 | 
										
																													
																							| [5] | 
																						 
											MA G X, HOLLAND C V, WANG T, et al. Human toxocariasis[J]. Lancet Infect Dis, 2018, 18(1):e14-e24.
																						 | 
										
																													
																							| [6] | 
																						 
											SMITH H, HOLLAND C, TAYLOR M, et al. How common is human toxocariasis? Towards standardizing our knowledge[J]. Trends Parasitol, 2009, 25(4):182-188.
																						 | 
										
																													
																							| [7] | 
																						 
											LAABS T L, WANG H, KATAGIRI Y, et al. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans[J]. J Neurosci, 2007, 27(52):14494-14501.
																						 | 
										
																													
																							| [8] | 
																						 
											MILLER G M, HSIEH-WILSON L C. Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans[J]. Exp Neurol, 2015, 274:115-125.
																						 | 
										
																													
																							| [9] | 
																						 
											GALTREY C M, FAWCETT J W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system[J]. Brain Res Rev, 2007, 54(1):1-18.
																						 | 
										
																													
																							| [10] | 
																						 
											DYCK S M, KARIMI-ABDOLREZAEE S. Chondroitin sulfate proteoglycans:key modulators in the developing and pathologic central nervous system[J]. Exp Neurol, 2015, 269:169-187.
																						 | 
										
																													
																							| [11] | 
																						 
											STEPHENSON E L, YONG V W. Pro-inflammatory roles of chondroitin sulfate proteoglycans in disorders of the central nervous system[J]. Matrix Biol, 2018, 71-72:432-442.
																						 | 
										
																													
																							| [12] | 
																						 
											MIZUGUCHI S, UYAMA T, KITAGAWA H, et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans[J]. Nature, 2003, 423(6938):443-448.
																						 | 
										
																													
																							| [13] | 
																						 
											HWANG H Y, OLSON S K, ESKO J D, et al. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis[J]. Nature, 2003, 423(6938):439-443.
																						 | 
										
																													
																							| [14] | 
																						 
											IZUMIKAWA T, KITAGAWA H, MIZUGUCHI S, et al. Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division[J]. J Biol Chem, 2004, 279(51):53755-53761.
																						 | 
										
																													
																							| [15] | 
																						 
											WIJFFELS G, EISEMANN C, RIDING G, et al. A novel family of chitin-binding proteins from insect Type 2 peritrophic matrix cDNA sequences, chitin binding activity, and cellular localization[J]. J Biol Chem, 2001, 276(18):15527-15536.
																						 | 
										
																													
																							| [16] | 
																						 
											NOBORN F, TOLEDO A G, SIHLBOM C, et al. Identification of chondroitin sulfate linkage region glycopeptides reveals prohormones as a novel class of proteoglycans[J]. Mol Cell Proteomics, 2015, 14(1):41-49.
																						 | 
										
																													
																							| [17] | 
																						 
											LAU L W, CUA R, KEOUGH M B, et al. Pathophysiology of the brain extracellular matrix:a new target for remyelination[J]. Nat Rev Neurosci, 2013, 14(10):722-729.
																						 | 
										
																													
																							| [18] | 
																						 
											COLES C H, SHEN Y J, TENNEY A P, et al. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension[J]. Science, 2011, 332(6028):484-488.
																						 | 
										
																													
																							| [19] | 
																						 
											NOBORN F, TOLEDO A G, NASIR W, et al. Expanding the chondroitin glycoproteome of Caenorhabditis elegans[J]. J Biol Chem, 2018, 293(1):379-389.
																						 | 
										
																													
																							| [20] | 
																						 
											OLSON S K, BISHOP J R, YATES J R, et al. Identification of novel chondroitin proteoglycans in Caenorhabditis elegans:embryonic cell division depends on CPG-1 and CPG-2[J]. J Cell Biol, 2006, 173(6):985-994.
																						 | 
										
																													
																							| [21] | 
																						 
											OLSON S K, GREENAN G, DESAI A, et al. Hierarchical assembly of the eggshell and permeability barrier in C. elegans[J]. J Cell Biol, 2012, 198(4):731-748.
																						 | 
										
																													
																							| [22] | 
																						 
											MERZENDORFER H, ZIMOCH L. Chitin metabolism in insects:structure, function and regulation of chitin synthases and chitinases[J]. J Exp Biol, 2003, 206(Pt 24):4393-4412.
																						 | 
										
																													
																							| [23] | 
																						 
											VÁZQUEZ J A, RODRÍGUEZ-AMADO I, MONTEMAYOR M I, et al. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources:characteristics, applications and eco-friendly processes:a review[J]. Mar Drugs, 2013, 11(3):747-774.
																						 | 
										
																													
																							| [24] | 
																						 
											DONG Z M, ZHANG W W, ZHANG Y, et al. Identification and characterization of novel chitin-binding proteins from the larval cuticle of silkworm, Bombyx mori[J]. J Proteome Res, 2016, 15(5):1435-1445.
																						 | 
										
																													
																							| [25] | 
																						 
											HASHIMOTO M, IKEGAMI T, SEINO S, et al. Expression and characterization of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12[J]. J Bacteriol, 2000, 182(11):3045-3054.
																						 | 
										
																													
																							| [26] | 
																						 
											DENG H M, LI Y, ZHANG J L, et al. Analysis of expression and chitin-binding activity of the wing disc cuticle protein BmWCP4 in the silkworm, Bombyx mori[J]. Insect Sci, 2016, 23(6):782-790.
																						 | 
										
																													
																							| [27] | 
																						 
											MA G X, ZHOU R Q, HU L, et al. Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis[J]. J Helminthol, 2018, 92(2):154-160.
																						 | 
										
																													
																							| [28] | 
																						 
											SATO M, GRANT B D, HARADA A, et al. Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans[J]. J Cell Sci, 2008, 121(Pt 19):3177-3186.
																						 |