Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 870-882.doi: 10.11843/j.issn.0366-6964.2025.02.035
• Preventive Veterinary Medicine • Previous Articles Next Articles
WANG Xiaofei1(), WANG Bosen2, WEI Mengyao1(
), JIANG Luyao1, XU Ganggang1, LIU Jiaxin1, MA Yingtian1, WANG Li1, SONG Yuxuan1,*(
), ZHANG Lei1,*(
)
Received:
2024-03-22
Online:
2025-02-23
Published:
2025-02-26
Contact:
SONG Yuxuan, ZHANG Lei
E-mail:3292486551@qq.com;15928622407@163.com;yuxuan_song2016@163.com;zhanglei07dongke@163.com
CLC Number:
WANG Xiaofei, WANG Bosen, WEI Mengyao, JIANG Luyao, XU Ganggang, LIU Jiaxin, MA Yingtian, WANG Li, SONG Yuxuan, ZHANG Lei. Study on the Role of Ewe's Milk in Ameliorating Pathological Changes in the Liver and Kidney of Mice in a Diabetes Model[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 870-882.
Table 1
Primer sequence information"
基因 Gene | 上游引物序列(5'→3') Forward primer sequence (5'→3') | 下游引物序列(5'→3') Reverse primer sequence (5'→3') |
IL-6 | AAGGACCAAGACCATCCAATTCATC | TGTCCACAAACTGATATGCTTAGGC |
TNF-α | GGGTGTTCATCCATTCTC | GGAAAGCCCATTTGAGT |
IL-1β | CCAACAGAAGTCGTAGCATCAAGG | TTAGGAATGTCACAAGTGCCAGTAC |
NF-κB | AAAGGAGGAAGGCAAAGCGAATC | GCGTGGCAACTACATTTCATTTCAG |
GAPDH | TCTCCCTCACAATTTCCATCC | GGGTGCAGCGAACTTTATTG |
Table 2
Nutritional content analysis of sheep milk and goat milk 平均100 g物质的含量/%"
指标 Index | 绵羊奶 Sheep milk | 山羊奶 Goat milk |
脂肪 Fat | 5.71±0.03 | 4.23±0.08** |
蛋白质 Protein | 5.52±0.15 | 3.92±0.07** |
乳糖 Lactose | 5.34±0.02 | 3.73±0.07** |
灰分 Ash content | 0.87±0.02 | 0.61±0.01** |
非脂固形物 SNF | 11.80±0.17 | 8.28±0.15** |
总干物质 Dry matter | 18.06±0.77 | 12.51±0.08** |
Table 3
Body weight changes of mice in each group g"
时间 Time | 对照组 Con group | 糖尿病模型组 DMC group | 绵羊奶组 Sheep group | 山羊奶组 Goat group |
第0周Week 0 | 18.45±1.47 | 18.86±1.46 | 18.71±1.34 | 18.74±1.48 |
第1周Week 1 | 20.02±1.88 | 21.49±1.72 | 21.44±0.91 | 21.60±1.73 |
第2周Week 2 | 21.55±1.04 | 23.51±1.42* | 23.40±0.59 | 23.68±1.32 |
第3周Week 3 | 22.98±0.85 | 26.24±1.34**** | 24.87±0.70 ## | 25.31±1.44 |
第4周Week 4 | 23.38±1.13 | 26.28±1.16*** | 24.77±0.52 ## | 25.51±1.12 |
第5周Week 5 | 23.99±0.64 | 22.65±0.82 * | 22.55±0.61 | 22.39±1.60 |
第6周Week 6 | 24.40±0.45 | 22.07±0.73**** | 22.33±0.35 | 22.40±1.43 |
第7周Week 7 | 24.42±0.97 | 21.23±1.15**** | 21.63±0.44 | 21.64±1.29 |
第8周Week 8 | 24.91±0.85 | 20.96±0.75**** | 21.69±1.09 | 21.83±1.18 |
第9周Week 9 | 24.61±1.02 | 20.16±0.90**** | 21.77±0.75 ## | 20.69±0.91 |
Table 4
Food intake changes of mice in each group g·d-1"
时间 Time | 对照组 Con group | 糖尿病模型组 DMC group | 绵羊奶组 Sheep group | 山羊奶组 Goat group |
第0周Week 0 | 3.17±0.24 | 3.43±0.26 | 3.32±0.23 | 3.24±0.23 |
第1周Week 1 | 3.41±0.17 | 3.66±0.36 | 3.14±0.10 # | 3.37±0.15 |
第2周Week 2 | 3.26±0.33 | 3.70±0.27 | 3.14±0.30 # | 3.19±0.75 # |
第3周Week 3 | 3.28±0.42 | 3.52±0.36 | 2.82±0.54 # | 3.26±0.56 |
第4周Week 4 | 3.22±0.16 | 3.55±0.40 | 3.13±0.53 | 3.29±0.80 |
第5周Week 5 | 3.35±0.37 | 3.41±0.30 | 2.84±0.42 | 3.12±0.46 |
第6周Week 6 | 3.39±0.10 | 3.32±0.23 | 2.81±0.40 | 3.52±0.61 |
第7周Week 7 | 3.35±0.25 | 3.37±0.20 | 2.96±0.72 | 3.18±0.60 |
第8周Week 8 | 3.24±0.53 | 3.51±0.41 | 3.07±0.52 | 3.31±0.65 |
第9周Week 9 | 3.31±0.49 | 3.71±0.21 | 2.95±0.32 # | 2.91±0.41 # |
Fig. 1
Effects of sheep milk and goat milk on blood glucose in diabetic mice A. Results of glucose tolerance tests (GTT) in different groups of mice at the end of the 4th week; B. Results of the area under the GTT curve. C. Results of glucose tolerance tests (GTT) in different groups of mice at the end of the 9th week; D. Results of the area under the GTT curve. Compared with the Con group, "****" means extremely significant difference (P < 0.01); Compared with the DMC group, "#" means significant difference (P < 0.05). The same as below"
Fig. 2
The effects of sheep milk and goat milk on serum and urine indices in diabetic mice A-F. The graphs showed the levels of total cholesterol (A), triglycerides (B), high-density lipoprotein cholesterol (C), low-density lipoprotein cholesterol (D), blood urea nitrogen (E), and creatinine (F) in the serum of different groups of mice. G-H. Urine albumin (G) and urine creatinine (H) in each group. Compared with the Con group, "****" means extremely significant difference (P < 0.01); Compared with the DMC group, "#" means significant difference (P < 0.05), "##", "###" and "####" mean extremely significant difference (P < 0.01). The same as below"
Fig. 5
Effects of sheep milk and goat milk on liver(A) and kidney(B) inflammation in diabetic mice Compared with the Con group, "****" means extremely significant difference (P < 0.01); compared with the DMC group, "#" means significant difference (P < 0.05), " ###" and " ####" mean extremely significant difference (P < 0.01)"
1 |
BEYDAG-TASÖZ B S , YENNEK S , GRAPIN-BOTTON A . Towards a better understanding of diabetes mellitus using organoid models[J]. Nat Rev Endocrinol, 2023, 19 (4): 232- 248.
doi: 10.1038/s41574-022-00797-x |
2 |
CHO N H , SHAW J E , KARURANGA S , et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138, 271- 281.
doi: 10.1016/j.diabres.2018.02.023 |
3 |
SUN Y X , TAO Q , WU X Q , et al. The utility of exosomes in diagnosis and therapy of diabetes mellitus and associated complications[J]. Front Endocrinol, 2021, 12, 756581.
doi: 10.3389/fendo.2021.756581 |
4 |
HOU Y L , DING W Y , WU P S , et al. Adipose-derived stem cells alleviate liver injury induced by type 1 diabetes mellitus by inhibiting mitochondrial stress and attenuating inflammation[J]. Stem Cell Res Ther, 2022, 13 (1): 132.
doi: 10.1186/s13287-022-02760-z |
5 |
RIVERA-ESTEBAN J , PONS M , PLANAS A , et al. Prediction of clinical events by liver stiffness and chronic kidney disease by NAFLD in patients with type-2 diabetes[J]. Gastroenterol Hepatol, 2023, 46 (9): 682- 691.
doi: 10.1016/j.gastrohep.2022.11.001 |
6 |
ZHANG X R , YIP T C F , TSE Y K , et al. Duration of type 2 diabetes and liver-related events in nonalcoholic fatty liver disease: A landmark analysis[J]. Hepatology, 2023, 78 (6): 1816- 1827.
doi: 10.1097/HEP.0000000000000432 |
7 | BǍLǍŞESCU E , ION D A , CIOPLEA M , et al. Caspases, cell death and diabetic nephropathy[J]. Rom J Intern Med, 2015, 53 (4): 296- 303. |
8 | KANASAKI K , TADURI G , KOYA D . Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis[J]. Front Endocrinol (Lausanne), 2013, 4, 7. |
9 |
HUANG H Y , LIU Y P , XU Z , et al. Effect of fucoidan on kidney injury in type 2 diabetic rats based on PI3K/AKT/Nrf2[J]. J Funct Foods, 2022, 90, 104976.
doi: 10.1016/j.jff.2022.104976 |
10 | 赵梦雅, 张维, 赵学军, 等. 基于中医古籍的羊乳功用研究[J]. 中国中医基础医学杂志, 2019, 25 (9): 1295- 1298. |
ZHAO M Y , ZHANG W , ZHAO X J , et al. Literature research of goat milk in ancient books of traditional Chinese medicine[J]. Journal of Basic Chinese Medicine, 2019, 25 (9): 1295- 1298. | |
11 |
FLIS Z , MOLIK E . Importance of bioactive substances in sheep's milk in human health[J]. Int J Mol Sci, 2021, 22 (9): 4364.
doi: 10.3390/ijms22094364 |
12 |
DELGADILLO-PUGA C , NORIEGA L G , MORALES-ROMERO A M , et al. Goat's milk intake prevents obesity, hepatic steatosis and insulin resistance in mice fed a high-fat diet by reducing inflammatory markers and increasing energy expenditure and mitochondrial content in skeletal muscle[J]. Int J Mol Sci, 2020, 21 (15): 5530.
doi: 10.3390/ijms21155530 |
13 |
LIU W , ZHOU Y L , SUN H , et al. Goat milk improves glucose homeostasis via enhancement of hepatic and skeletal muscle AMP-activated protein kinase activation and modulation of gut microbiota in streptozocin-induced diabetic rats[J]. Mol Nutr Food Res, 2021, 65 (6): e2000888.
doi: 10.1002/mnfr.202000888 |
14 | 刘佳欣. 绵羊奶调节糖代谢的作用研究[D]. 杨凌: 西北农林科技大学, 2023. |
LIU J X. Study on the role of sheep milk in regulating sugar metabolism[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
15 |
QIAO S M , LIU R , LV C J , et al. Bergenin impedes the generation of extracellular matrix in glomerular mesangial cells and ameliorates diabetic nephropathy in mice by inhibiting oxidative stress via the mTOR/β-TrcP/Nrf2 pathway[J]. Free Radic Biol Med, 2019, 145, 118- 135.
doi: 10.1016/j.freeradbiomed.2019.09.003 |
16 | ZHANG L L , GE W P , SONG Y X , et al. The composition and nutrition characteristics in sheep milk[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22 (1): 413- 423. |
17 |
BRUNI N , CAPUCCHIO M T , BIASIBETTI E , et al. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine[J]. Molecules, 2016, 21 (6): 752.
doi: 10.3390/molecules21060752 |
18 |
BERLUTTI F , PANTANELLA F , NATALIZI T , et al. Antiviral properties of lactoferrin--a natural immunity molecule[J]. Molecules, 2011, 16 (8): 6992- 7018.
doi: 10.3390/molecules16086992 |
19 |
EMBLETON N D , BERRINGTON J E , MCGUIRE W , et al. Lactoferrin: Antimicrobial activity and therapeutic potential[J]. Semin Fetal Neonatal Med, 2013, 18 (3): 143- 149.
doi: 10.1016/j.siny.2013.02.001 |
20 |
SIQUEIROS-CENDÓN T , ARÉVALO-GALLEGOS S , IGLESIAS-FIGUEROA B F , et al. Immunomodulatory effects of lactoferrin[J]. Acta Pharmacol Sin, 2014, 35 (5): 557- 566.
doi: 10.1038/aps.2013.200 |
21 |
KANWAR J R , ROY K , PATEL Y , et al. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions[J]. Molecules, 2015, 20 (6): 9703- 9731.
doi: 10.3390/molecules20069703 |
22 |
ZHENG J P , XIE Y Z , LI F , et al. Lactoferrin improves cognitive function and attenuates brain senescence in aged mice[J]. J Funct Foods, 2020, 65, 103736.
doi: 10.1016/j.jff.2019.103736 |
23 |
LORDAN R , WALSH A , CRISPIE F , et al. Caprine milk fermentation enhances the antithrombotic properties of cheese polar lipids[J]. J Funct Foods, 2019, 61, 103507.
doi: 10.1016/j.jff.2019.103507 |
24 |
BJØRNSHAVE A , HERMANSEN K , HOLST J J . Pre-meal effect of whey proteins on metabolic parameters in subjects with and without type 2 diabetes: a randomized, crossover trial[J]. Nutrients, 2018, 10 (2): 122.
doi: 10.3390/nu10020122 |
25 |
DĄBEK M , KRUSZEWSKA D , FILIP R , et al. α-Ketoglutarate (AKG) absorption from pig intestine and plasma pharmacokinetics[J]. J Anim Physiol Anim Nutr (Berl), 2005, 89 (11-12): 419- 426.
doi: 10.1111/j.1439-0396.2005.00566.x |
26 | ZHAO Y Y , XING H C , WANG X M , et al. Management of diabetes mellitus in patients with chronic liver diseases[J]. J Diabetes Res, 2019, 2019, 6430486. |
27 |
GJORGJIEVA M , MITHIEUX G , RAJAS F . Hepatic stress associated with pathologies characterized by disturbed glucose production[J]. Cell Stress, 2019, 3 (3): 86- 99.
doi: 10.15698/cst2019.03.179 |
28 |
WILD S H , WALKER J J , MORLING J R , et al. Cardiovascular disease, cancer, and mortality among people with type 2 diabetes and alcoholic or nonalcoholic fatty liver disease hospital admission[J]. Diabetes Care, 2018, 41 (2): 341- 347.
doi: 10.2337/dc17-1590 |
29 |
HU X Y , LIU Z G , LU Y T , et al. Glucose metabolism enhancement by 10-hydroxy-2-decenoic acid via the PI3K/AKT signaling pathway in high-fat-diet/streptozotocin induced type 2 diabetic mice[J]. Food Funct, 2022, 13 (19): 9931- 9946.
doi: 10.1039/D1FO03818D |
30 |
CHEN X Y , ZHANG Z F , NIU H M , et al. Goat milk improves glucose metabolism in type 2 diabetic mice and protects pancreatic β-cell functions[J]. Mol Nutr Food Res, 2024, 68 (1): e2200842.
doi: 10.1002/mnfr.202200842 |
31 |
JULIBERT A , DEL MAR BIBILONI M , TUR J A . Dietary fat intake and metabolic syndrome in adults: A systematic review[J]. Nutr Metab Cardiovasc Dis, 2019, 29 (9): 887- 905.
doi: 10.1016/j.numecd.2019.05.055 |
32 |
CHEN S C , TSENG C H . Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients[J]. Rev Diabet Stud, 2013, 10 (2-3): 88- 100.
doi: 10.1900/RDS.2013.10.88 |
33 | 刘鑫, 刘甜甜, 张彦丽, 等. 芪参益气滴丸对高脂饮食联合链脲霉素诱导糖尿病小鼠肝损伤的作用及机制[J]. 天津中医药, 2023, 40 (7): 904- 909. |
LIU X , LIU T T , ZHANG Y L , et al. Effect and mechanism of Qishen Yiqi Droplet on liver injury induced by high-fat diet combined with streptozotocin in diabetes mice[J]. Tianjin Journal of Traditional Chinese Medicine, 2023, 40 (7): 904- 909. | |
34 |
CHEN J F , ZHANG Q , LIU D W , et al. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy[J]. Metabolism, 2021, 122, 154834.
doi: 10.1016/j.metabol.2021.154834 |
35 |
GLASSOCK R J , RULE A D . Aging and the kidneys: Anatomy, physiology and consequences for defining chronic kidney disease[J]. Nephron, 2016, 134 (1): 25- 29.
doi: 10.1159/000445450 |
36 | PÉREZ-LÓPEZ L , BORONAT M , MELIÁN C , et al. Animal models and renal biomarkers of diabetic nephropathy[J]. Adv Exp Med Biol, 2021, 1307, 521- 551. |
37 |
CARLSSON A C , INGELSSON E , SUNDSTRÖM J , et al. Use of proteomics to investigate kidney function decline over 5 years[J]. Clin J Am Soc Nephrol, 2017, 12 (8): 1226- 1235.
doi: 10.2215/CJN.08780816 |
38 | 朱重师, 牛晨, 刘佳欣, 等. 绵羊奶生物活性成分的功能分析[J]. 中国乳品工业, 2024, 52 (1): 40- 46. |
ZHU Z S , NIU C , LIU J X , et al. Overview of functional analysis of bioactive components in sheep milk[J]. China Dairy Industry, 2024, 52 (1): 40- 46. | |
39 |
WANG B , TIMILSENA Y P , BLANCH E , et al. Lactoferrin: Structure, function, denaturation and digestion[J]. Crit Rev Food Sci Nutr, 2019, 59 (4): 580- 596.
doi: 10.1080/10408398.2017.1381583 |
40 |
ASHOKBHAI J K , BASAIAWMOIT B , SAKURE A , et al. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk[J]. J Food Sci Technol, 2022, 59 (11): 4262- 4272.
doi: 10.1007/s13197-022-05493-2 |
[1] | LÜ Yongle, ZHENG Wen, WANG Qianhui, ZHU Jiaqi, HUANG Xiaoqi, CAO Zhongzan, LUAN Xinhong. Research Progress of Natural Active Substances against Metabolic Associated Fatty Liver Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 45-62. |
[2] | HE Haiyang, MA Baohua, PENG Sha. Research Progress on the Role and Mechanism of Mesenchymal Stem Cell-derived Exosomes in Animal Acute Renal Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 115-125. |
[3] | Zijin YUAN, Wanxin WANG, Ya XING, Jiahui LI, Ying XUE, Jing GE, Minmeng ZHAO, Long LIU, Daoqing GONG, Tuoyu GENG. HDLBP Is Involved in Goose Fatty Liver Formation by Regulating the Level of Oxidative Stress and the Expression of Inflammatory Factors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3897-3913. |
[4] | Xinman LIU, Hongyuan ZHOU, Rui SANG, Bingjie GE, Kexin YAN, Wei WANG, Minghong YU, Xiaotong LIU, Qian QIU, Xuemei ZHANG. Effect of Taraxasterol on Oxidative Stress in Liver Tissue of Broilers with AFB1 Induced Liver Injury [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4141-4152. |
[5] | Jingxuan WANG, Lizhi DAI, Zhenyu WANG, Ying LIU, Tong YU, Min YAN, Ruilong WANG, Jianhua XIAO. Study on the Characteristics of Liver Energy Metabolism during the Induction of Insulin Resistance by High Fat Diet [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4172-4185. |
[6] | Ming LOU, Haoyu LUO, Fang MU, Hui LI, Ning WANG. Advances in the Study of Chicken Insulin Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3288-3296. |
[7] | Ze DING, Yaofeng ZHANG, Bei MA, Pan LIU, Tianzhen DONG, Tianyang WANG, Junfeng LIU. Preparation and Preliminary Evaluation of Hydrogel Loaded with Esculin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3155-3162. |
[8] | Mingde ZHU, Yijing CHEN, Pengxiu DAI, Yihua ZHANG, Xinke ZHANG. Study on the Hnf1b, Pdx1, Ngn3 and Pax4/Nkx6.1 Reprograms Canine Adipose-derived MSCs to Differentiate into IPCs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3205-3212. |
[9] | Qilu ZHOU, Jinsong LIU, Chao WU, Caimei YANG, Yulan LIU, Ruiqiang ZHANG. Effects of Tannic Acid on Liver Tissue Function, Antioxidant Ability and Inflammatory Response in Lipopolysaccharide Stressed Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2519-2529. |
[10] | SU Yiman, YE Jiali, QIU Wenyue, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, TANG Zhaoxin, SU Rongsheng. Asiatic Acid Alleviates LPS-induced Pyroptosis in Renal Cell by Inhibiting HMGB1/TLR4/NF-κB Pathway in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1777-1786. |
[11] | TAN Ning, LI Balun, HAN Miao, LI Chenchen, JING Yuanxiang, KOU Zheng, LI Na, PENG Sha, ZHAO Xianjun, HUA Jinlian. Evaluation of Therapeutic Effect of Mitoquionl Mesylate Pretreated Adipose Derived Mesenchymal Stem Cells on Canine Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1328-1344. |
[12] | ZHANG Zhifei, TANG Xueying, MIN Li, TONG Xiong, CHEN Weidong, JU Xianghong, LI Dagang. Construction of Gene Coexpression Network Related to Lactation Period and Fecundity in Liver Tissue of Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 528-539. |
[13] | WANG Dong, LIU Kexin, HE Yanjun, DENG Shouxiang, LIU Yun, MA Weiming. Effects of Dietary Sodium Humate Supplementation on Liver Tissue Inflammation and Antioxidant Capacity of Salmonella Typhimurium-Infected Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 629-639. |
[14] | GUO Yunpeng, NIU Dun, LI Shuang, JIANG Xinghao, ZHANG Lixia, REN Guiping, YIN Jiechao. Study of Long-lasting Hypoglycemic Effect of Canine Fibroblast Growth Factor 21 Using a Mice Model with Type 1 Diabetes Mellitus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 770-784. |
[15] | Lanmeng XU, Yuzhi HUANG, Yuzhu HAN, Changying LI, Jie ZHANG. Research Progress of Gut Microbiota Regulating Fat Deposition and Metabolic Related Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4263-4277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||