Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (1): 22-30.doi: 10.11843/j.issn.0366-6964.2024.01.003
• REVIEW • Previous Articles Next Articles
CAO Jianhua1,2, YANG Baigao1, ZHANG Peipei1, FENG Xiaoyi1, ZHANG Hang1, YU Zhou1, NIU Yifan1, HAO Haisheng1, DU Weihua1, ZHU Huabin1, YANG Ling2*, ZHAO Xueming1*
Received:
2023-07-10
Online:
2024-01-23
Published:
2024-01-24
CLC Number:
CAO Jianhua, YANG Baigao, ZHANG Peipei, FENG Xiaoyi, ZHANG Hang, YU Zhou, NIU Yifan, HAO Haisheng, DU Weihua, ZHU Huabin, YANG Ling, ZHAO Xueming. Mechanisms of Negative Energy Balance Affects Follicular Development in Dairy Cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 22-30.
[1] | FRIGGENS N C, DISENHAUS C, PETIT H V.Nutritional sub-fertility in the dairy cow:towards improved reproductive management through a better biological understanding[J].Animal, 2010, 4(7):1197-1213. |
[2] | ROYAL M, MANN G E, FLINT A P F.Strategies for reversing the trend towards subfertility in dairy cattle[J].Vet J, 2000, 160(1):53-60. |
[3] | BUTLER S T, MARR A L, PELTON S H, et al.Insulin restores GH responsiveness during lactation-induced negative energy balance in dairy cattle:effects on expression of IGF-I and GH receptor 1A[J].J Endocrinol, 2003, 176(2):205-217. |
[4] | DOBSON H, WALKER S L, MORRIS M J, et al.Why is it getting more difficult to successfully artificially inseminate dairy cows?[J].Animal, 2008, 2(8):1104-1111. |
[5] | UKITA H, YAMAZAKI T, YAMAGUCHI S, et al.Environmental factors affecting the conception rates of nulliparous and primiparous dairy cattle[J].J Dairy Sci, 2022, 105(8):6947-6955. |
[6] | SWARTZ T H, MOALLEM U, KAMER H, et al.Characterization of the liver proteome in dairy cows experiencing negative energy balance at early lactation[J].J Proteomics, 2021, 246:104308. |
[7] | DRACKLEY J K.ADSA Foundation Scholar Award.Biology of dairy cows during the transition period:the final frontier?[J].J Dairy Sci, 1999, 82(11):2259-2273. |
[8] | ROCHE J F, MACKEY D, DISKIN M D.Reproductive management of postpartum cows[J].Anim Reprod Sci, 2000, 60-61:703-712. |
[9] | STR[XCAA.TIF;S*4, JZ] CZEK I, MŁYNEK K, DANIELEWICZ A.The capacity of Holstein-Friesian and Simmental cows to correct a negative energy balance in relation to their performance parameters, course of lactation, and selected milk components[J].Animals (Basel), 2021, 11(6):1674. |
[10] | XU W, VAN KNEGSEL A, SACCENTI E, et al.Metabolomics of milk reflects a negative energy balance in cows[J].J Proteome Res, 2020, 19(8):2942-2949. |
[11] | CARVALHO M R, PEÑAGARICANO F, SANTOS J E P, et al.Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows[J].J Dairy Sci, 2019, 102(12):11701-11717. |
[12] | ZHANG F, NAN X M, WANG H, et al.Effects of propylene glycol on negative energy balance of postpartum dairy cows[J].Animals (Basel), 2020, 10(9):1526. |
[13] | KONG Y Z, ZHAO C X, TAN P P, et al.fgf21 reduces lipid accumulation in bovine hepatocytes by enhancing lipid oxidation and reducing lipogenesis via AMPK signaling[J].Animals (Basel), 2022, 12(7):939. |
[14] | PRALLE R S, ERB S J, HOLDORF H T, et al.Greater liver PNPLA3 protein abundance in vivo and in vitro supports lower triglyceride accumulation in dairy cows[J].Sci Rep, 2021, 11(1):2839. |
[15] | GULIŃSKI P.Ketone bodies-causes and effects of their increased presence in cows' body fluids:A review[J].Vet World, 2021, 14(6):1492-1503. |
[16] | MOORE S M, DEVRIES T J.Effect of diet-induced negative energy balance on the feeding behavior of dairy cows[J].J Dairy Sci, 2020, 103(8):7288-7301. |
[17] | RADCLIFF R P, MCCORMACK B L, CROOKER B A, et al.Plasma hormones and expression of growth hormone receptor and insulin-like growth factor-I mRNA in hepatic tissue of periparturient dairy cows[J].J Dairy Sci, 2003, 86(12):3920-3926. |
[18] | RIBEIRO E S, LIMA F S, GRECO L F, et al.Prevalence of periparturient diseases and effects on fertility of seasonally calving grazing dairy cows supplemented with concentrates[J].J Dairy Sci, 2013, 96(9):5682-5697. |
[19] | SONG Y X, LOOR J J, LI C Y, et al.Enhanced mitochondrial dysfunction and oxidative stress in the mammary gland of cows with clinical ketosis[J].J Dairy Sci, 2021, 104(6):6909-6918. |
[20] | GARTNER T, GERNAND E, GOTTSCHALK J, et al.Relationships between body condition, body condition loss, and serum metabolites during the transition period in primiparous and multiparous cows[J].J Dairy Sci, 2019, 102(10):9187-9199. |
[21] | KERWIN A L, BURHANS W S, MANN S, et al.Transition cow nutrition and management strategies of dairy herds in the northeastern United States:Part II-Associations of metabolic-and inflammation-related analytes with health, milk yield, and reproduction[J].J Dairy Sci, 2022, 105(6):5349-5369. |
[22] | WALSH R B, WALTON J S, KELTON D F, et al.The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows[J].J Dairy Sci, 2007, 90(6):2788-2796. |
[23] | RUTHERFORD A J, OIKONOMOU G, SMITH R F.The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle[J].J Dairy Sci, 2016, 99(6):4808-4815. |
[24] | MANRIQUEZ D, THATCHER W W, SANTOS J E P, et al.Effect of body condition change and health status during early lactation on performance and survival of Holstein cows[J].J Dairy Sci, 2021, 104(12):12785-12799. |
[25] | TAMMINGA S, LUTEIJN P A, MEIJER R G M.Changes in composition and energy content of liveweight loss in dairy cows with time after parturition[J].Livest Prod Sci, 1997, 52(1):31-38. |
[26] | CARVALHO P D, SOUZA A H, AMUNDSON M C, et al.Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows[J].J Dairy Sci, 2014, 97(6):3666-3683. |
[27] | STEVENSON J S, BANUELOS S, MENDONCA L G D.Transition dairy cow health is associated with first postpartum ovulation risk, metabolic status, milk production, rumination, and physical activity[J].J Dairy Sci, 2020, 103(10):9573-9586. |
[28] | MOHTASHAMIPOUR F, DIRANDEH E, ANSARI-PIRSARAEI Z, et al.Postpartum health disorders in lactating dairy cows and its associations with reproductive responses and pregnancy status after first timed-AI[J]. Theriogenology, 2020, 141:98-104. |
[29] | D'OCCHIO M J, BARUSELLI P S, CAMPANILE G.Influence of nutrition, body condition, and metabolic status on reproduction in female beef cattle:A review[J].Theriogenology, 2019, 125:277-284. |
[30] | DISKIN M G, MACKEY D R, ROCHE J F, et al.Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle[J].Anim Reprod Sci, 2003, 78(3-4):345-370. |
[31] | BEAM S W, BUTLER W R.Energy balance, metabolic hormones, and early postpartum follicular development in dairy cows fed prilled lipid[J].J Dairy Sci, 1998, 81(1):121-131. |
[32] | XU W, VERVOORT J, SACCENTI E, et al.Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation[J].J Dairy Sci, 2020, 103(5):4795-4805. |
[33] | METALLINOU C, ASIMAKOPOULOS B, SCHRÖER A, et al.Gonadotropin-releasing hormone in the ovary[J].Reprod Sci, 2007, 14(8):737-749. |
[34] | KAPRARA A, HUHTANIEMI I T.The hypothalamus-pituitary-gonad axis:Tales of mice and men[J].Metabolism, 2018, 86:3-17. |
[35] | WANG H Q, WANG W H, CHEN C Z, et al.Regulation of FSH synthesis by differentially expressed miR-488 in anterior adenohypophyseal cells[J].Animals (Basel), 2021, 11(11):3262. |
[36] | ROSER J F, MEYERS-BROWN G.Enhancing fertility in mares:recombinant equine gonadotropins[J].J Equine Vet Sci, 2019, 76:6-13. |
[37] | SILVA L O E, FOLCHINI N P, ALVES R L O R, et al.Effect of progesterone from corpus luteum, intravaginal implant, or both on luteinizing hormone release, ovulatory response, and subsequent luteal development after gonadotropin-releasing hormone treatment in cows[J].J Dairy Sci, 2023, 106(6):4413-4428. |
[38] | ZHAO H, GE J B, WEI J C, et al.Effect of FSH on E2/GPR30-mediated mouse oocyte maturation in vitro[J].Cell Signal, 2020, 66:109464. |
[39] | TANG X R, MA L Z, GUO S, et al.High doses of FSH induce autophagy in bovine ovarian granulosa cells via the AKT/mTOR pathway[J].Reprod Domest Anim, 2021, 56(2):324-332. |
[40] | LIU Y X, ZHANG Y, LI Y Y, et al.Regulation of follicular development and differentiation by intra-ovarian factors and endocrine hormones[J].Front Biosci (Landmark Ed), 2019, 24(5):983-993. |
[41] | HUNTER M G, ROBINSON R S, MANN G E, et al.Endocrine and paracrine control of follicular development and ovulation rate in farm species[J].Anim Reprod Sci, 2004, 82-83:461-477. |
[42] | ROCHE J F, MIHM M, DISKIN M G, et al.A review of regulation of follicle growth in cattle[J].J Anim Sci, 1998, 76(S3):16-29. |
[43] | BUTLER S T, PELTON S H, KNIGHT P G, et al.Follicle-stimulating hormone isoforms and plasma concentrations of estradiol and inhibin A in dairy cows with ovulatory and non-ovulatory follicles during the first postpartum follicle wave[J].Domest Anim Endocrinol, 2008, 35(1):112-119. |
[44] | ZHANG J, DENG Y F, CHEN W L, et al.Theca cell-conditioned medium added to in vitro maturation enhances embryo developmental competence of buffalo (Bubalus bubalis) oocytes after parthenogenic activation[J].Reprod Domest Anim, 2020, 55(11):1501-1510. |
[45] | DOMINGUES R R, GINTHER O J, TOLEDO M Z, et al.Increased dietary energy alters follicle dynamics and wave patterns in heifers[J].Reproduction, 2020, 160(6):943-953. |
[46] | PARK S R, KIM S K, KIM S R, et al.Novel roles of luteinizing hormone (LH) in tissue regeneration-associated functions in endometrial stem cells[J].Cell Death Dis, 2022, 13(7):605. |
[47] | FORDE N, BELTMAN M E, LONERGAN P, et al.Oestrous cycles in Bos taurus cattle[J].Anim Reprod Sci, 2011, 124(3-4):163-169. |
[48] | MIHM M, GOOD T E M, IRELAND J L H, et al.Decline in serum follicle-stimulating hormone concentrations alters key intrafollicular growth factors involved in selection of the dominant follicle in heifers[J].Biol Reprod, 1997, 57(6):1328-1337. |
[49] | PERRY R C, CORAH L R, COCHRAN R C, et al.Influence of dietary energy on follicular development, serum gonadotropins, and first postpartum ovulation in suckled beef cows[J].J Anim Sci, 1991, 69(9):3762-3773. |
[50] | SEOANE-COLLAZO P, MARTÍNEZ-SÁNCHEZ N, MILBANK E, et al.Incendiary leptin[J].Nutrients, 2020, 12(2):472. |
[51] | INAGAKI-OHARA K.Gastric leptin and tumorigenesis:beyond obesity[J].Int J Mol Sci, 2019, 20(11):2622. |
[52] | NOGUEIRA A V B, NOKHBEHSAIM M, TEKIN S, et al.Resistin is increased in periodontal cells and tissues:in vitro and in vivo studies[J].Mediators Inflamm, 2020, 2020:9817095. |
[53] | SCARAMUZZI R J, BROWN H M, DUPONT J.Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis:a perspective[J].Reprod Domest Anim, 2010, 45(S3):32-41. |
[54] | SALEM A M.Variation of leptin during menstrual cycle and its relation to the hypothalamic-pituitary-gonadal (HPG) axis:a systematic review[J].Int J Womens Health, 2021, 13:445-458. |
[55] | CHILDS G V, ODLE A K, MACNICOL M C, et al.The importance of leptin to reproduction[J].Endocrinology, 2021, 162(2):bqaa204. |
[56] | OHGA H, ITO K, KAKINO K, et al.Leptin is an important endocrine player that directly activates gonadotropic cells in teleost fish, chub mackerel[J].Cells, 2021, 10(12):3505. |
[57] | DAYI A, BEDIZ C S, MUSAL B, et al.Comparison of leptin levels in serum and follicular fluid during the oestrous cycle in cows[J].Acta Vet Hung, 2005, 53(4):457-467. |
[58] | BOELHAUVE M, SINOWATZ F, WOLF E, et al.Maturation of bovine oocytes in the presence of leptin improves development and reduces apoptosis of in vitro-produced blastocysts[J].Biol Reprod, 2005, 73(4):737-744. |
[59] | ALSHAHEEN T A, AWAAD M H H, MEHAISEN G M K.Leptin improves the in vitro development of preimplantation rabbit embryos under oxidative stress of cryopreservation[J].PLoS One, 2021, 16(2):e0246307. |
[60] | BISPHAM J, GOPALAKRISHNAN G S, DANDREA J, et al.Maternal endocrine adaptation throughout pregnancy to nutritional manipulation:consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development[J].Endocrinology, 2003, 144(8):3575-3585. |
[61] | MAKAREVICH A V, MARKKULA M.Apoptosis and cell proliferation potential of bovine embryos stimulated with insulin-like growth factor I during in vitro maturation and culture[J].Biol Reprod, 2002, 66(2):386-392. |
[62] | GIBSON C, DE RUIJTER-VILLANI M, STOUT T A E.Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy[J].Front Vet Sci, 2022, 9:912721. |
[63] | GARNSWORTHY P C, SINCLAIR K D, WEBB R.Integration of physiological mechanisms that influence fertility in dairy cows[J].Animal, 2008, 2(8):1144-1152. |
[64] | WOELDERS H, VAN DER LENDE T, KOMMADATH A, et al.Central genomic regulation of the expression of oestrous behaviour in dairy cows:a review[J].Animal, 2014, 8(5):754-764. |
[65] | BAKER J, HARDY M P, ZHOU J, et al.Effects of an Igf1 gene null mutation on mouse reproduction[J].Mol Endocrinol, 1996, 10(7):903-918. |
[66] | FENWICK M A, LLEWELLYN S, FITZPATRICK R, et al.Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct[J].Reproduction, 2008, 135(1):63-75. |
[67] | BUTLER W R.Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows[J].Livest Prod Sci, 2003, 83(2-3):211-218. |
[68] | KAWASHIMA C, SAKAGUCHI M, SUZUKI T, et al.Metabolic profiles in ovulatory and anovulatory primiparous dairy cows during the first follicular wave postpartum[J].J Reprod Dev, 2007, 53(1):113-120. |
[69] | SONG Y X, WANG Z J, ZHAO C, et al.Effect of negative energy balance on plasma metabolites, minerals, hormones, cytokines and ovarian follicular growth rate in Holstein dairy cows[J].J Vet Res, 2021, 65(3):361-368. |
[70] | WARZYCH E, LIPINSKA P.Energy metabolism of follicular environment during oocyte growth and maturation[J].J Reprod Dev, 2020, 66(1):1-7. |
[71] | ZHANG Z X, LI X, YANG F, et al.DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis[J].Nat Commun, 2021, 12(1):5872. |
[72] | KRISHER R L, BAVISTER B D.Enhanced glycolysis after maturation of bovine oocytes in vitro is associated with increased developmental competence[J].Mol Reprod Dev, 1999, 53(1):19-26. |
[73] | SUTTON-MCDOWALL M L, GILCHRIST R B, THOMPSON J G.The pivotal role of glucose metabolism in determining oocyte developmental competence[J].Reproduction, 2010, 139(4):685-695. |
[74] | WALSH S W, MATTHEWS D, BROWNE J A, et al.Acute dietary restriction in heifers alters expression of genes regulating exposure and response to gonadotrophins and IGF in dominant follicles[J].Anim Reprod Sci, 2012, 133(1-2):43-51. |
[75] | MEGAHED A A, HIEW M W H, CONSTABLE P D.Clinical utility of plasma fructosamine concentration as a hypoglycemic biomarker during early lactation in dairy cattle[J].J Vet Intern Med, 2018, 32(2):846-852. |
[76] | BERTEVELLO P S, TEIXEIRA-GOMES A P, SEYER A, et al.Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle[J].Int J Mol Sci, 2018, 19(10):3261. |
[77] | ABAZARIKIA A, ARIU F, RASEKHI M, et al.Distribution and size of lipid droplets in oocytes recovered from young lamb and adult ovine ovaries[J].Reprod Fertil Dev, 2020, 32(11):1022-1026. |
[78] | MISSIO D, FRITZEN A, VIEIRA C C, et al.Increased β-hydroxybutyrate (BHBA) concentration affect follicular growth in cattle[J].Anim Reprod Sci, 2022, 243:107033. |
[79] | LIU T, QU J X, TIAN M Y, et al.Lipid metabolic process involved in oocyte maturation during folliculogenesis[J].Front Cell Dev Biol, 2022, 10:806890. |
[80] | SHI M H, SIRARD M A.Metabolism of fatty acids in follicular cells, oocytes, and blastocysts[J].Reprod Fertil, 2022, 3(2):R96-R108. |
[81] | FURUKAWA E, CHEN Z, KUBO T, et al.Simultaneous free fatty acid elevations and accelerated desaturation in plasma and oocytes in early postpartum dairy cows under intensive feeding management[J].Theriogenology, 2022, 193:20-29. |
[1] | PIAN Huifang, DU Xubin, LI Yan, ZHANG Yuchen, HE Hui, YU Debing. Effects of Betaine on Performance, Egg Quality and Antioxidant Capacity of Late-phase Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1085-1094. |
[2] | KANG Jia, DUAN Xiangru, YIN Xuejiao, YANG Ruochen, LI Taichun, SHAN Xinyu, CHEN Meijing, ZHANG Yingjie, LIU Yueqin. Effects of Cysteine and Methionine on Secondary Hair Follicle Growth and Hair Dermal Papilla Cell Proliferation in vitro in Cashmere Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 515-527. |
[3] | LIU Jie, XU Xiangping, DENG Ming, ZOU Xian, JIANG Shengwei, LIU Dewu, LIU Guangbin, SUN Baoli, GUO Yongqing, LI Yaokun. Effect of miR-144-5p Targeting WNT5a on the Proliferation and Apoptosis of Goat Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2421-2435. |
[4] | JIAO Zhengxing, PAN Yangyang, WANG Meng, WANG Jinglei, MA Wenbin, GAO Xiang, ZHANG Hui, CUI Yan, YU Sijiu, WANG Libin. Preparation of Polyclonal Antibody against Yak LC3B Protein and Its Application in Detection of Expression in Reproductive Organs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2436-2447. |
[5] | WANG Wei, HE Xiaoyun, CHU Mingxing. Advances in the Regulation of Mammal Reproduction by the Interaction of Circadian Rhythm and Estrogens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1771-1781. |
[6] | YU Shiqiang, LI Liuxue, ZHAO Xiaobo, ZHAO Huiying, TU Yan, ZHAO Yuchao, JIANG Linshu. Differences and Correlations of Lactation Performance in Chinese Holstein Dairy Cows at Different Lactation Stages and Somatic Levels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1003-1014. |
[7] | XIAO Shiyu, LU Chang, MA Juan, WANG Chuang, QI Meiyu, YAO Yuchang. Effects of N-acetylcysteine [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1046-1057. |
[8] | LIU Yuanyi, LI Xinyu, Bayinnamula, CUI Fang, MANG Lai, DU Ming. Single-Cell Transcriptome Sequencing Technology and its Application in Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 421-433. |
[9] | DU Haidong, NA Renhua. Research Progress on Physiological Metabolism and Microbial Changes of Ruminants During Gestation and Lactation and Their Effects on Offspring Development [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4458-4467. |
[10] | LUO Ruijie, CAO Suying. Research Progress and Application Prospect of Livestock Pluripotent Stem Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4003-4015. |
[11] | SUN Dongxiao, ZHANG Shengli, ZHANG Qin, LI Jiao, ZHANG Guixiang, LIU Chousheng, ZHENG Weijie. Application Progress on Genomic Selection Technology for Dairy Cattle in China [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039. |
[12] | FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Progress in Mechanism of Reduced Fertility in Dairy Cows due to Negative Energy Balance [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4050-4060. |
[13] | YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, ZHAO Xueming. Advances in Research on Plateau Adaptation of Yak [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 12-23. |
[14] | WANG Yiqun, LIU Zupei, LI Yating, ZHANG Haisen, LI Dan, JIN Yaping, CHEN Huatao. The Dairy Cow NR1D1 Gene’s Eukaryotic Expression Vector Construction, Expression Profile and Its Ovarian Localization [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 133-145. |
[15] | MA Xiaoling, PENG Wei, SHU Shi. Serum Dynamic Metabonomics Analysis of Yaks in Late Perinatal Period Based on LCMS Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3811-3826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||