[1] SON Y H, KA S, KIM A Y, et al. Regulation of adipocyte differentiation via microRNAs[J]. Endocrinol Metab (Seoul), 2014, 29(2):122-135.
[2] USHMOROV A, WIRTH T. FOXO in B-cell lymphopoiesis and B cell neoplasia[J]. Semin Cancer Biol, 2017, doi:10.1016/j.semcancer.2017.07.008.
[3] WANG Q R, REN J. mTOR-Independent autophagy inducer trehaloserescues against insulin resistance-induced myocardial contractile anomalies:role of p38 MAPK and FoxO1[J]. Pharmacol Res, 2016, 111:357-373.
[4] ROY S K, SRIVASTAVA R K, SHANKAR S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FoxO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer[J]. J Mol Signal, 2010, 5:10.
[5] PAN C W, JIN X, ZHAO Y, et al. AKT-phosphorylated FOXO1 suppresses ERK activation and chemo-resistance by disrupting IQGAP1-MAPK interaction[J]. EMBO J, 2017, 36(8):995-1010.
[6] YUAN K, AI W B, WAN L Y, et al. The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells[J]. Cell Biosci, 2017, 7:38.
[7] HILTON C, NEVILLE M J, KARPE F. microRNAs in adipose tissue:their role in adipogenesis and obesity[J]. Int J Obes (Lond), 2013, 37(3):325-332.
[8] LEE E K, LEE M J, ABDELMOHSEN K, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor γ expression[J]. Mol Cell Biol, 2011, 31(4):626-638.
[9] MOHAMMED B T, SONTAKKE S D, IOANNIDIS J, et al. The adequate corpus luteum:miR-96 promotes luteal cell survival and progesterone production[J]. J Clin Endocrinol Metab, 2017, 102(7):2188-2198.
[10] ZHANG L Q, QUAN H Y, WANG S H, et al. miR-183 promotes growth of non-small cell lung cancer cells through FoxO1 inhibition[J]. Tumor Biol, 2015, 36(10):8121-8126.
[11] WU Z Q, HE B F, HE J C, et al. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer[J]. Prostate, 2013, 73(6):596-604.
[12] HE W B, FENG L, XIA D L, et al. miR-374a promotes the proliferation of human osteosarcoma by downregulating FOXO1 expression[J]. Int J Clin Exp Med, 2015, 8(3):3482-3489.
[13] XIONG Y, PANG W J, WEI N, et al. Knockdown of both FoxO1 and C/EBPβ promotes adipogenesis in porcine preadipocytes through feedback regulation[J]. Cell Biol Int, 2013, 37(9):905-916.
[14] BABA S, UENO Y, KIKUCHI T, et al. A limonoid kihadanin B from immature Citrus unshiu peels suppresses adipogenesis through repression of the Akt-FOXO1-PPARγ axis in adipocytes[J]. J Agric Food Chem, 2016, 64(51):9607-9615.
[15] LEWIS B P, SHIH I H, JONES-RHOADES M W, et al. Prediction of mammalian microRNA targets[J]. Cell, 2003, 115(7):787-798.
[16] KERTESZ M, IOVINO N, UNNERSTALL U, et al. The role of site accessibility in microRNA target recognition[J]. Nat Genet, 2007, 39(10):1278-1284.
[17] LI J H, LIU S, ZHOU H, et al. StarBase v2.0:decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Res, 2014, 42(D1):D92-D97.
[18] JOHN B, ENRIGHT A J, ARAVIN A, et al. Human microRNA targets[J]. PLoS Biol, 2004, 2(11):e363.
[19] LIN G L, CHAI J, YUAN S, et al. VennPainter:a tool for the comparison and identification of candidate genes based on Venn diagrams[J]. PLoS One, 2016, 11(4):e0154315.
[20] ZHANG T, KIM D H, XIAO X W, et al. FoxO1 plays an important role in regulating β-cell compensation for insulin resistance in male mice[J]. Endocrinology, 2016, 157(3):1055-1070.
[21] NERURKAR P V, NISHIOKA A, ECK P O, et al. Regulation of glucose metabolism via hepatic forkhead transcription factor 1(FoxO1) by Morinda citrifolia (noni) in high-fat diet-induced obese mice[J]. Br J Nutr, 2012, 108(2):218-228.
[22] KUO Y T, LIN T H, CHEN W L, et al. Alpha-lipoic acid induces adipose triglyceride lipase expression and decreases intracellular lipid accumulation in HepG2 cells[J]. Eur J Pharmacol, 2012, 692(1-3):10-18.
[23] PANG W J, YU T Y, BAI L, et al. Tissue expression of porcine FoxO1 and its negative regulation during primary preadipocyte differentiation[J]. Mol Biol Rep, 2009, 36(1):165-176.
[24] LIU X M, LIU G F, TAN X W, et al. Gene expression profiling of SIRT1, FoxO1, and PPARγ in backfat tissues and subcutaneous adipocytes of Lilu bulls[J]. Meat Sci, 2014, 96(2):704-711.
[25] PU Y, VEIGA-LOPEZ A. PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes[J]. Cell Mol Biol Lett, 2017, 22:6.
[26] 林婄婄, 高中元, 袁亚男, 等. PPARα和PPARγ基因在不同脂尾型绵羊脂肪组织中的发育性表达研究[J]. 畜牧兽医学报, 2012, 43(9):1369-1376.
LIN P P, GAO Z Y, YUAN Y N, et al. Developmental expression of PPARα and PPARγ mRNA in adipose tissues of different fat-tailed sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2012, 43(9):1369-1376. (in Chinese)
[27] DE LA ROSA RODRIGUEZ M A, KERSTEN S. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors[J]. Biochim Biophys Acta, 2017, 1862(10):1212-1220.
[28] KIM D H, LEE B, KIM M J, et al. Molecular mechanism of betaine on hepatic lipid metabolism:Inhibition of forkhead Box O1(FoxO1) binding to peroxisome proliferator-activated receptor gamma (PPARγ)[J]. J Agric Food Chem, 2016, 64(36):6819-6825.
[29] DONG P Y, MAI Y, ZHANG Z Y, et al. miR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1[J]. Acta Biochim Biophys Sin (Shanghai), 2014, 46(7):565-571.
[30] LI H, XUE M, XU J, et al. miR-301a is involved in adipocyte dysfunction during obesity-related inflammation via suppression of PPARγ[J]. Pharmazie, 2016, 71(2):84-88.
[31] GUO Y T, ZHANG X X, HUANG W L, et al. Identification and characterization of differentially expressed miRNAs in subcutaneous adipose between Wagyu and Holstein cattle[J]. Sci Rep, 2017, 7:44026.
[32] HUANG H Y, LIU R R, ZHAO G P, et al. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens[J]. Sci Rep, 2015, 5:16132. |