

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6204-6218.doi: 10.11843/j.issn.0366-6964.2025.12.023
胡伯欣1(
), 高程远1, 刘从1, 陈茹曼1, 朱捷2,*(
), 田树军1,*(
)
收稿日期:2025-05-14
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
朱捷,田树军
E-mail:1756720967@qq.com;j.zhu56@hotmail.co.uk;tsj7890@126.com
作者简介:胡伯欣(1998-),男,河北保定人,硕士生,主要从事动物繁殖学研究,E-mail: 1756720967@qq.com
基金资助:
HU Boxin1(
), GAO Chengyuan1, LIU Cong1, CHEN Ruman1, ZHU Jie2,*(
), TIAN Shujun1,*(
)
Received:2025-05-14
Online:2025-12-23
Published:2025-12-24
Contact:
ZHU Jie, TIAN Shujun
E-mail:1756720967@qq.com;j.zhu56@hotmail.co.uk;tsj7890@126.com
摘要:
旨在优化绵羊卵母细胞小群(5枚/组)体外培养体系,改善其成熟质量及后续发育潜能。本研究通过设置不同培养体积(50 COCs/500 μL、5 COCs/500 μL、5 COCs/50 μL)及添加外源BMP15与GDF9蛋白(200 ng·mL-1),评估颗粒细胞扩展指数及其相关HAS2基因表达、卵丘和卵母细胞凋亡相关基因(BAX、BCL2、C-Myc)表达、卵母细胞氧化还原稳态(GSH、ROS、GPX-1、GSR)及胚胎发育指标(卵裂率、囊胚率、囊胚平均细胞数),并进一步优化体外成熟培养时长(18 h、21 h、24 h),确立优化方案。结果表明,添加BMP15和GDF9显著提升卵丘扩展指数(P < 0.01),上调HAS2基因表达,改善氧化还原稳态(GSH水平升高,ROS降低);500 μL培养液结合21 h成熟方案使小群培养卵母细胞体外受精后的48 h卵裂率达到70.23%±2.78%及囊胚率35.33%±1.53%,而21 hIVM组较24 h IVM组BAX表达量和BAX/BCL2比值显著降低。5 COCs /500 μL小群培养效果优于5 COCs/50 μL,联合添加BMP15和GDF9蛋白可降低细胞凋亡并提升胞内氧化还原能力,体外成熟时长由24 h缩短至21 h可通过降低细胞凋亡并促进囊胚OCT4、CCNB1基因表达并且提高囊胚平均细胞数。
中图分类号:
胡伯欣, 高程远, 刘从, 陈茹曼, 朱捷, 田树军. 绵羊卵母细胞小群培养条件优化[J]. 畜牧兽医学报, 2025, 56(12): 6204-6218.
HU Boxin, GAO Chengyuan, LIU Cong, CHEN Ruman, ZHU Jie, TIAN Shujun. Optimization of Culture Conditions for Small Groups of Ovine Oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6204-6218.
表 1
引物序列"
| 引物Primer | 引物序列(5′→3′) Primer sequence | 产物长度/bp Products length |
| β-actin | F: GTCACCAACTGGGACGACA R: AGGCGTACAGGGACAGCA | 208 |
| C-Myc | F: GGATAGTGGAAATACGGGCT R: GTGGTAGAAGTTCTCCTCCT | 181 |
| BAX | F: AGCGAGTGTCTGAAGCG R: CCCAGTTGAAGTTGCCGT | 145 |
| BCL2 | F: ATGACTTCTCTCGGCGCTAC R: CTCCACACACATGACCCCTC | 176 |
| GDF9 | F: AGCTAGGACTGCGTTGGAAT R: AGGTCTGTGTCTCCCACCTA | 133 |
| BMP15 | F: TTGTCAGTGAGCTGGTGGAT R: TGCAGGACTGGGCAATCATA | 202 |
| OCT4 | F: GGAAAGGTGTTCAGCCA R: ATTCTCGTTGTTGTCAGC | 109 |
| GPX-1 | F: AACGTAGCATCGCTCTGAGG R: CAAACTGGTTGCACGGGAAG | 115 |
| GSR | F: CTGGAAGAGTTGCCTCGCC R: TCATTATTGATGTCTTAGAACCCAGG | 103 |
| HAS2 | F: CCTCATCATCCAAAGCCTG R: ACATTTCCGCAAATAGTCTG | 218 |
| CCNB1 | F: CACAGGATACACAGAGAATG R: CTTGATGGCGATGAATTTAG | 143 |
表 2
体外受精及胚胎发育能力比较"
| 组别 Group | 卵子数 Number of oocytes | IVF 24 h卵裂率/% IVF 24 h cleavage rate | IVF 48 h卵裂率/% IVF 48 h cleavage rate | 7 d囊胚率/% 7 d blastocyst rate |
| 50 COCs /500 μL | 350 | 70.5±1.7a | 76.3±1.5a | 38.8±2.2a |
| 5 COCs /500 μL | 220 | 53.8±2.3b | 61.9±2.7b | 23.0±1.9b |
| 5 COCs /50 μL | 220 | 55.8±2.5b | 64.0±0.8b | 23.7±1.2b |
表 3
BMP15和GDF9蛋白不同浓度组合对小群培养卵母细胞第一极体排出率的影响"
| 蛋白浓度 Protein concentration | 组别Group | |
| 5 COCs /500μL | 5 COCs /50μL | |
| 0 ng·mL-1 BMP15+0 ng·mL-1 GDF9 | 66.23±1.37c | 65.33±1.52d |
| 100 ng·mL-1 BMP15 | 68.33±3.51b | 67.67±1.57cd |
| 200 ng·mL-1 BMP15 | 74.33±1.16b | 72.34±3.21bc |
| 100 ng·mL-1 GDF9 | 68.67±3.06b | 69.00±3.61bcd |
| 200 ng·mL-1 GDF9 | 72.67±2.08b | 70.33±1.15bc |
| 100 ng·mL-1BMP15+100 ng·mL-1 GDF9 | 73.33±1.53b | 73.67±3.06b |
| 200 ng·mL-1 BMP15+200 ng·mL-1 GDF9 | 82.67±3.06a | 82.33±4.16a |
表 4
添加BMP15、GDF9对小群培养绵羊卵母细胞的发育能力及胚胎质量的影响"
| 组别 Group | 卵子数 Number of oocytes | IVF 24 h卵裂率/% IVF 24 h cleavage rate | IVF 48 h卵裂率/% IVF 48 h cleavage rate | 7 d囊胚率/% 7 d blastocyst rate |
| 5 COCs /500 μL | 250 | 41.4±3.2a | 64.2±1.1a | 22.3±1.2a |
| 5 COCs /50 μL | 250 | 44.0±2.5a | 63.0±3.0a | 22.5±1.2a |
| 5 COCs /500 μL+BMP15/GDF9 | 250 | 55.0±2.4b | 66.8±1.6a | 32.9±1.6b |
| 5 COCs /50 μL+BMP15/GDF9 | 250 | 59.0±2.4b | 68.0±1.0a | 31.8±1.4b |
| 1 |
VIANA J H M . Development of the world farm animal embryo industry over the past 30 years[J]. Theriogenology, 2024, 230, 151- 156.
doi: 10.1016/j.theriogenology.2024.09.012 |
| 2 | 孙克佳. 活体采卵与小群培养对牛羊体外胚胎生产的影响[D]. 保定: 河北农业大学2022. |
| SUN K J. The impact of ovum pick-up and small group culture on in vitro embryo production in cattle and sheep[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese) | |
| 3 |
PRIEGO-GONZÁLEZ A , MUNOZ-MACEDA A , CERDEIRA-LOZANO J , et al. Successful ultrasound-guided ovum pick-up (OPU) and subsequent in vitro embryo production in a domestic cat[J]. Theriogenology, 2024, 229, 47- 52.
doi: 10.1016/j.theriogenology.2024.08.017 |
| 4 |
DU Y , XIA Y , XU J , et al. Effects of donor age and reproductive history on developmental potential of ovum pickup oocytes in Japanese Black cattle (Wagyu)[J]. Theriogenology, 2024, 221, 25- 30.
doi: 10.1016/j.theriogenology.2024.03.012 |
| 5 |
SIMMONS R , TUTT D A , GUVEN-ATES G , et al. Enhanced progesterone support during stimulated cycles of transvaginal follicular aspiration improves bovine in vitro embryo production[J]. Theriogenology, 2023, 199, 77- 85.
doi: 10.1016/j.theriogenology.2023.01.003 |
| 6 | WIECZOREK J , KOSENIUK J , SKRZYSZOWSKA M , et al. L-OPU in goat and sheep-different variants of the oocyte recovery method[J]. Animals (Basel), 2020, 10 (4): 658. |
| 7 |
VEGA D A , NARVÁEZ H J . Oocyte quality in adapted Bos taurus taurus cows[J]. Anim Biotechnol, 2023, 34 (9): 4675- 4679.
doi: 10.1080/10495398.2023.2185248 |
| 8 | GHAFARI F , SALAVATI M , PIERCY R J , et al. Beneficial effects of melatonin on canine oocyte nuclear maturation via reduction of oxidative stress[J]. Reproduction, 2025, 169 (4): e240388. |
| 9 |
MISHRA A , REDDY I J , GUPTA P S , et al. Expression of apoptotic and antioxidant enzyme genes in sheep oocytes and in vitro produced embryos[J]. Anim Biotechnol, 2017, 28 (1): 18- 25.
doi: 10.1080/10495398.2016.1193743 |
| 10 |
HUANG K , LI C , GAO F , et al. Epigallocatechin-3-gallate promotes the in vitro maturation and embryo development following IVF of porcine oocytes[J]. Drug Des Devel Ther, 2021, 15, 1013- 1020.
doi: 10.2147/DDDT.S295936 |
| 11 |
MAHMOODI M , CHERAGHI E , RIAHI A . Correction to: The effect of wharton's jelly-derived conditioned medium on the in vitro maturation of immature oocytes, embryo development, and genes expression involved in apoptosis[J]. Reprod Sci, 2023, 30 (11): 3400.
doi: 10.1007/s43032-023-01356-z |
| 12 |
TANG Y , LU S , WEI J , et al. Growth differentiation factor 9 regulates the expression of estrogen receptors via Smad2/3 signaling in goat cumulus cells[J]. Theriogenology, 2024, 219, 65- 74.
doi: 10.1016/j.theriogenology.2024.02.021 |
| 13 |
JIAO Y , JIANG T , LIN Q , et al. Molecular characterization of the follicular development of BMP15-edited pigs[J]. Reproduction, 2023, 166 (4): 247- 261.
doi: 10.1530/REP-23-0034 |
| 14 |
NISHIO M , HOSHINO Y , SATO E . Effect of droplet size and number of oocytes examined on mouse oocyte quality in in vitro maturation[J]. J Mamm Ova Res, 2011, 28 (1): 53- 60.
doi: 10.1274/jmor.28.53 |
| 15 |
EBRAHIMI M , MARA L , SUCCU S , et al. The effect of single versus group culture on cumulus-oocyte complexes from early antral follicles[J]. J Assist Reprod Genet, 2025, 42 (3): 961- 976.
doi: 10.1007/s10815-025-03404-w |
| 16 |
GILCHRIST R B , LANE M , THOMPSON J G . Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality[J]. Hum Reprod Update, 2008, 14 (2): 159- 177.
doi: 10.1093/humupd/dmm040 |
| 17 |
DU C , DAVIS J S , CHEN C , et al. FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro[J]. Reproduction, 2021, 161 (2): 205- 214.
doi: 10.1530/REP-20-0264 |
| 18 |
MORIKAWA R , LEE J , MIYANO T . Effects of oocyte-derived growth factors on the growth of porcine oocytes and oocyte-cumulus cell complexes in vitro[J]. J Reprod Dev, 2021, 67 (4): 273- 281.
doi: 10.1262/jrd.2021-026 |
| 19 |
CHENG M , CHEN X , HAN M , et al. miR-155-5p improves oocyte maturation in porcine cumulus cells through connexin 43-mediated regulation of MPF activity[J]. Theriogenology, 2024, 214, 124- 133.
doi: 10.1016/j.theriogenology.2023.10.013 |
| 20 |
STOCKER W A , WALTON K L , RICHANI D , et al. A variant of human growth differentiation factor-9 that improves oocyte developmental competence[J]. J Biol Chem, 2020, 295 (23): 7981- 7991.
doi: 10.1074/jbc.RA120.013050 |
| 21 |
FERRER-RODA M , PARAMIO M T , VILA-BELTRÁN J , et al. Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats[J]. Theriogenology, 2025, 234, 164- 173.
doi: 10.1016/j.theriogenology.2024.12.015 |
| 22 |
WANG L , GAO J , MA J , et al. Effects of hyperhomocysteinemia on follicular development and oocytes quality[J]. iScience, 2024, 27 (11): 111241.
doi: 10.1016/j.isci.2024.111241 |
| 23 | JIAO Y , BEI C , WANG Y , et al. Bone morphogenetic protein 15 gene disruption affects the in vitro maturation of porcine oocytes by impairing spindle assembly and organelle function[J]. Int J Biol Macromol, 2024, 267 (Pt 1): 131417. |
| 24 |
LI W , LIU Z , WANG P , et al. The transcription factor RUNX1 affects the maturation of porcine oocytes via the BMP15/TGF-β signaling pathway[J]. Int J Biol Macromol, 2023, 238, 124026.
doi: 10.1016/j.ijbiomac.2023.124026 |
| 25 |
GIUSTARINI D , MILZANI A , DALLE-DONNE I , et al. How to increase cellular glutathione[J]. Antioxidants (Basel), 2023, 12 (5): 1094.
doi: 10.3390/antiox12051094 |
| 26 |
ASHIBE S , MIYAMOTO R , KATO Y , et al. Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI)[J]. Theriogenology, 2019, 133, 71- 78.
doi: 10.1016/j.theriogenology.2019.04.012 |
| 27 |
DAVOODIAN N , KADIVAR A , MEHRBAN H . Supplementation of media with gamma-oryzanol as a novel antioxidant to overcome redox imbalance during bovine oocyte maturation in vitro[J]. Reprod Domest Anim, 2024, 59 (1): e14503.
doi: 10.1111/rda.14503 |
| 28 |
KIM M J , KANG H G , JEON S B , et al. The antioxidant betulinic acid enhances porcine oocyte maturation through Nrf2/Keap1 signaling pathway modulation[J]. PLoS One, 2024, 19 (10): e0311819.
doi: 10.1371/journal.pone.0311819 |
| 29 | READER K L , STANTON J L , JUENGEL J L . The role of oocyte organelles in determining developmental competence[J]. Biology (Basel), 2017, 6 (3): 35. |
| 30 |
LI J , BALBOULA A Z , ABOELENAIN M , et al. Effect of autophagy induction and cathepsin B inhibition on developmental competence of poor quality bovine oocytes[J]. J Reprod Dev, 2020, 66 (1): 83- 91.
doi: 10.1262/jrd.2019-123 |
| 31 |
ROBERT C . Nurturing the egg: the essential connection between cumulus cells and the oocyte[J]. Reprod Fertil Dev, 2021, 34 (2): 149- 159.
doi: 10.1071/RD21282 |
| 32 | YUAN Y , SPATE L D , REDEL B K , et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation[J]. Proc Natl Acad Sci U S A, 2017, 114 (29): E5796- E5804. |
| 33 |
ZHANG M , ZHANG J , WANG D , et al. C-X-C motif chemokine ligand 12 improves the developmental potential of bovine oocytes by activating SH2 domain-containing tyrosine phosphatase 2 during maturation†[J]. Biol Reprod, 2023, 109 (3): 282- 298.
doi: 10.1093/biolre/ioad079 |
| 34 |
MARTINEZ C A , CUELLO C , PARRILLA I , et al. Exogenous melatonin in the culture medium does not affect the development of in vivo-derived pig embryos but substantially improves the quality of in vitro-produced embryos[J]. Antioxidants (Basel), 2022, 11 (6): 1177.
doi: 10.3390/antiox11061177 |
| 35 |
TONG J , SHENG S , SUN Y , et al. Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve[J]. Reproduction, 2017, 153 (4): 443- 451.
doi: 10.1530/REP-16-0641 |
| 36 |
CADENAS J , PORS S E , KUMAR A , et al. Concentrations of oocyte secreted GDF9 and BMP15 decrease with MⅡ transition during human IVM[J]. Reprod Biol Endocrinol, 2022, 20 (1): 126.
doi: 10.1186/s12958-022-01000-6 |
| 37 |
TAWEECHAIPAISANKUL A , JIN JX , LEE S , et al. The effects of canthaxanthin on porcine oocyte maturation and embryo development in vitro after parthenogenetic activation and somatic cell nuclear transfer[J]. Reprod Domest Anim, 2016, 51 (6): 870- 876.
doi: 10.1111/rda.12748 |
| 38 |
REN X , YUN X , YANG T , et al. Epifriedelanol delays the aging of porcine oocytes matured in vitro[J]. Toxicon, 2023, 233, 107256.
doi: 10.1016/j.toxicon.2023.107256 |
| 39 |
HUANG K , LI C , GAO F , et al. Epigallocatechin-3-Gallate promotes the in vitro maturation and embryo development following IVF of porcine oocytes[J]. Drug Des Devel Ther, 2021, 15, 1013- 1020.
doi: 10.2147/DDDT.S295936 |
| 40 |
MASSOUD G , SPANN M , VAUGHT K C , et al. Biomarkers assessing the role of cumulus cells on IVF outcomes: a systematic review[J]. J Assist Reprod Genet, 2024, 41 (2): 253- 275.
doi: 10.1007/s10815-023-02984-9 |
| [1] | 刘丹妮, 种丽伟, 宫平, 魏佩玲, 柴婷, 耿天颖, 吴伟伟, 郑文新. 山羊感染绵羊肺炎支原体的病理学分析[J]. 畜牧兽医学报, 2026, 57(1): 423-431. |
| [2] | 杨明颖, 王娜, 刘源壹, 李昕俞, 巴音那木拉, 石玉杰, 芒来, 杜明. 马卵母细胞玻璃化冷冻保存研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4143-4155. |
| [3] | 王蕊, 衡诺, 胡樱凡, 王欢, 朱妮, 何维, 轩秀丽, 胡智辉, 熊铿, 巩建飞, 郝海生, 朱化彬, 赵善江. 不同等级牛卵丘-卵母细胞复合体体外成熟后卵母细胞发育能力差异的机制分析[J]. 畜牧兽医学报, 2025, 56(9): 4432-4451. |
| [4] | 魏康康, 马贵, 李文迪, 田雨, 张令锴, 朱继红, 胡亚美. 单细胞测序技术在绵羊卵巢生长发育过程中的研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3080-3087. |
| [5] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [6] | 唐毓, 张颖, 杨镒峰, 薛海龙, 刘理想, 许保增. 甘氨酸提高水貂卵母细胞玻璃化冷冻保存效率的关键机制[J]. 畜牧兽医学报, 2025, 56(7): 3265-3277. |
| [7] | 韩僖彤, 张楠, 张宁, 张家新. FLI通过增加糖代谢途径促进牛卵母细胞体外成熟[J]. 畜牧兽医学报, 2025, 56(6): 2778-2789. |
| [8] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
| [9] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
| [10] | 闫瑞, 贾朝阳, 马静, 杨娟, 刘新峰, 陈强. 3D培养在家畜卵母细胞及胚胎培养的研究现状与应用前景[J]. 畜牧兽医学报, 2025, 56(4): 1494-1507. |
| [11] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
| [12] | 李艳娥, 梁友萍, 樊洁, 吴芳燕, 尧香悦, 李毛却乎, 次仁仓决, 郝桂英, 古小彬. 绵羊痒螨钙网蛋白对兔外周血单个核细胞Th1/Th2和Th17/Treg免疫平衡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1910-1918. |
| [13] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
| [14] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
| [15] | 楚翼健, 崔久增, 李增开, 张磊, 褚婷婷, 黄艳平, 宋宇轩. 绵羊子宫内膜容受前期与容受期的阴道微生物比较研究[J]. 畜牧兽医学报, 2025, 56(2): 689-699. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||