[1] LI X Y, MOESTA A K, XIAO C, et al. Targeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity[J]. Cancer Discov, 2019, 9(12): 1754-1773. [2] SCHADLICH I S, WINZER R, STABERNACK J, et al. The role of the ATP-adenosine axis in ischemic stroke[J]. Semin Immunopathol, 2023, 45(3): 347-365. [3] WANG C, YINQ, SN Z, et al. Progress on role of extracellular ATP and its metabolite adenosine in immunoregulation: Review[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2020, 36(12): 1134-1140. [4] GRASSI F, MARINO R. The P2X7 receptor in mucosal adaptive immunity[J]. Purinergic Signal, 2024, 20(1): 9-19. [5] VUERICH M, ROBSON S C, LONGHI M S. Ectonucleotidases in intestinal and hepatic inflammation[J]. Front Immunol, 2019, 10: 507. [6] GUTKNECHT DA SILVA J L, PASSOS D F, CABRAL F L, et al. Istradefylline induces A2A/P2X7 crosstalk expression inducing pro-inflammatory signal, and reduces AKT/mTOR signaling in melanoma-bearing mice[J]. Med Oncol, 2023, 40(6): 178. [7] PENG Z W, ROTHWEILER S, WEI G, et al. The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis[J]. Hepatol Commun, 2017, 1(9): 957-972. [8] LEE N T, SAVVIDOU I, SELAN C, et al. Development of endothelial-targeted CD39 as a therapy for ischemic stroke[J]. J Thromb Haemost, 2024, 22(8): 2331-2344. [9] ZENG J, NING Z, WANG Y, et al. Implications of CD39 in immune-related diseases[J]. Int Immunopharmacol, 2020, 89: 107055. [10] SAVIO L E B, DE ANDRADE MELLO P, FIGLIUOLO V R, et al. CD39 limits P2X7 receptor inflammatory signaling a nd attenuates sepsis-induced liver injury[J]. J Hepatol, 2017, 67(4): 716-726. [11] MALONEY J P, BRANCHFORD B R, BRODSKY G L, et al. The ENTPD1 promoter polymorphism -860 A>G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk[J]. Faseb j, 2017, 31(7): 2771-2784. [12] ZHAO P, GU L, GAO Y, et al. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits[J]. Commun Biol, 2023, 6(1): 894. [13] TAM P L F, LEUNG D. The molecular impacts of retrotransposons in development and diseases[J]. Int J Mol Sci, 2023, 24(22): 16418. [14] ZHENG Y, CHEN C, WANG M, et al. SINE insertion in the pig carbonic anhydrase 5B (CA5B) gene is associated with changes in gene expression and phenotypic variation[J]. Animals (Basel), 2023, 13(12):1942. [15] KRAMEROV D A, VASSETZKY N S. Origin and evolution of SINEs in eukaryotic genomes[J]. Heredity (Edinb), 2011, 107(6): 487-495. [16] SENFT A D, MACFARLAN T S. Transposable elements shape the evolution of mammalian development[J]. Nat Rev Genet, 2021, 22(11): 691-711. [17] CHOI J D, DEL PINTO L A, SUTTER N B. SINE retrotransposons import polyadenylation signals to 3'UTRs in dog (Canis familiaris)[J]. Mob DNA, 2025, 16(1): 1. [18] WANG X, CHI C, HE J, et al. SINE insertion may act as a repressor to affect the expression of pig LEPROT and growth traits[J]. Genes (Basel), 2022, 13(8):1422. [19] QI F, CHEN X, WANG J, et al. Genome-wide characterization of structure variations in the Xiang pig for genetic resistance to African swine fever[J]. Virulence, 2024, 15(1): 2382762. [20] 梁小芬, 冉雪琴, 牛 熙, 等. 香猪CYP3A29基因3'-UTR结构变异及其与肌肉雄激素水平的关联分析[J]. 中国畜牧兽医, 2023, 50(8): 3199-3209. LIANG X F,RAN X Q,NIU X, et al.Analysis of 3'-UTR Structural variations of CYP3A29 gene in Xiang pigs and its association with muscle androgen levels[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(8): 3199-3209. (in Chinese) [21] PENG Z W, ROTHWEILER S, WEI G, et al. The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis[J]. Hepatol Commun, 2017, 1(9): 957-972. [22] SABATEL C, BUREAU F. The innate immune brakes of the lung[J]. Front Immunol, 2023, 14: 1111298. [23] RYANTO G R T, SURAYA R, NAGANO T. The importance of lung innate immunity during health and disease[J]. Pathogens, 2025, 14(1):91. [24] WANG L, LI Y J, YANG X, et al. Purinergic signaling: a potential therapeutic target for ischemic stroke[J]. Purinergic Signal, 2023, 19(1): 173-183. [25] ROBSON S C, WU Y, SUN X, et al. Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation[J]. Semin Thromb Hemost, 2005, 31(2): 217-233. [26] ORTIZ M A, DIAZ-TORNÉ C, DE AGUSTIN J J, et al. Altered CD39 and CD73 expression in rheumatoid arthritis: Implications for disease activity and treatment response[J]. Biomolecules, 2023, 14(1):1. [27] 李默晗. CD39通过下调PAI-1表达与活性保护缺血性卒中脑组织[D]. 长沙:中南大学, 2022. LI M H. CD39 protects the brain tissue of ischemic stroke by down-regulating the expression and activity of PAI-1[D]. Changsha: Zhongnan University, 2022. (in Chinese) [28] 夏国庆. ATP通过P2X4和CD39调控酒精相关性脂肪性肝炎机制研究[D]. 合肥:安徽医科大学,2022. XIA G Q. Research on the Mechanism of ATP regulating Alcoholic Steatohepatitis through P2X4 and CD39[D]. Hefie: Anhui Medical University, 2022. (in Chinese) [29] 杜 鹏. CD39-腺苷-A2B信号通路在低温携氧机械灌注改善DCD肝脏缺血再灌注损伤中的作用及机制研究[D]. 南昌:南昌大学, 2022. DU P. Role and mechanism of CD39-adenosine-A2B signaling pathway in hypothermic oxygen-carrying mechanical perfusion to ameliorate liver ischemia-reperfusion injury in DCD[D]. Nanchang:Nanchang University, 2022. (in Chinese) [30] LIU J J, RAN X Q, LI S, et al. Polymorphism in the first intron of follicle stimulating hormone beta gene in three Chinese pig breeds and two European pig breeds[J]. Anim Reprod Sci, 2009, 111(2-4): 369-375. [31] MAGOTRA A, NASKAR S, DAS B, et al. A comparative study of SINE insertion together with a mutation in the first intron of follicle stimulating hormone beta gene in indigenous pigs of India[J]. Mol Biol Rep, 2015, 42(2): 465-470. [32] 黄月丽, 冉雪琴, 牛 熙, 等. 香猪CHD3基因3'-侧翼区264 bp结构变异的研究[J]. 中国畜牧兽医, 2022, 49(8): 3026-3035. HUANG Y L, RAN X Q, NIU X,et al. A study of 264 bp structural variation in the 3'-flanking region of the CHD3 gene of the balsam pig[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(8): 3026-3035. (in Chinese) [33] ZHAO P, GU L, GAO Y, et al. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits[J]. Commun Biol, 2023, 6(1): 894. [34] TUCKER J M, GLAUNSINGER B A. Host noncoding retrotransposons induced by DNA viruses: a SINE of infection?[J]. J Virol, 2017, 91(23):e00982-17. [35] KARIJOLICH J, ABERNATHY E, GLAUNSINGER B A. Infection-induced retrotransposon-derived noncoding RNAs enhance herpesviral gene expression via the NF-κB pathway[J]. PLoS Pathog, 2015, 11(11): e1005260. [36] HWANG H, CHANG H R, BAEK D. Determinants of functional microRNA targeting[J]. Mol Cells, 2023, 46(1): 21-32. [37] XI E, BAI J, ZHANG K, et al. Genomic variants disrupt miRNA-mRNA regulation[J]. Chem Biodivers, 2022, 19(10): e202200623. [38] 李河林, 蒋玉芬, 程 娜, 等. 筛选的差异表达microRNAs对猪卵母细胞Npm2基因的表达调控及作用研究[J]. 畜牧兽医学报, 2024, 55(11): 5035-5049. LI H L, JIANG Y F, CHENG N, et al. Regulation of Npm2 gene expression and role of screened differentially expressed microRNAs in porcine oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5035-5049. (in Chinese) [39] KOH D, BIN JEON H, OH C, et al. RNA-binding proteins in cellular senescence[J]. Mech Ageing Dev, 2023, 214: 111853. [40] 余祖华, 高梦茹, 齐志颖, 等. RNA结合蛋白ELAVL1的功能及其调控病毒复制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1914-1925. YU Z H, GAO M R, QI Z Y, et al. Advances in the function of the RNA-binding protein ELAVL1 and its regulation of viral replication[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. (in Chinese) [41] AMEIS D, LIU F, KIRBY E, et al. The RNA-binding protein Quaking regulates multiciliated and basal cell abundance in the developing lung[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 320(4): L557-L567. |