1 |
ZHU W , BU G W , HU R F , et al. KLF4 facilitates chromatin accessibility remodeling in porcine early embryos[J]. Sci China Life Sci, 2024, 67 (1): 96- 112.
doi: 10.1007/s11427-022-2349-9
|
2 |
BU G W , ZHU W , LIU X , et al. Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos[J]. Genome Res, 2022, 32 (8): 1487- 1501.
doi: 10.1101/gr.276207.121
|
3 |
HE T Y , PENG J Y , YANG S , et al. SINE-associated LncRNA SAWPA regulates porcine zygotic genome activation[J]. Adv Sci (Weinh), 2024, 11 (2): 2307505.
doi: 10.1002/advs.202307505
|
4 |
GAO R N , LI Q C , QIU M Y , et al. Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows[J]. Anim Biosci, 2023, 36 (9): 1336- 1349.
doi: 10.5713/ab.22.0422
|
5 |
ZOLINI A M , BLOCK J , RABAGLINO M B , et al. Genes associated with survival of female bovine blastocysts produced in vivo[J]. Cell Tissue Res, 2020, 382 (3): 665- 678.
doi: 10.1007/s00441-020-03257-y
|
6 |
GROFF A F , RESETKOVA N , DIDOMENICO F , et al. RNA-seq as a tool for evaluating human embryo competence[J]. Genome Res, 2019, 29 (10): 1705- 1718.
doi: 10.1101/gr.252981.119
|
7 |
LUO Q K , ZHANG H . Emergence of bias during the synthesis and amplification of cDNA for scRNA-seq[J]. Adv Exp Med Biol, 2018, 1068, 149- 158.
|
8 |
STÅHLBERG A , KUBISTA M . The workflow of single-cell expression profiling using quantitative real-time PCR[J]. Expert Rev Mol Diagn, 2014, 14 (3): 323- 331.
doi: 10.1586/14737159.2014.901154
|
9 |
KRONEIS T , JONASSON E , ANDERSSON D , et al. Global preamplification simplifies targeted mRNA quantification[J]. Sci Rep, 2017, 7, 45219.
doi: 10.1038/srep45219
|
10 |
SEKOVANIĆ A , DOROTIĆ A , JURASOVIĆ J , et al. Pre-amplification as a method for improvement of quantitative RT-PCR analysis of circulating miRNAs[J]. Biochem Med (Zagreb), 2021, 31 (1): 010901.
|
11 |
XIAO Y , SOSA F , DE ARMAS L R , et al. An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis[J]. J Dairy Sci, 2021, 104 (3): 3722- 3735.
doi: 10.3168/jds.2020-19497
|
12 |
MOGHADDASZADEH-AHRABI S , FARAJNIA S , RAHIMI-MIANJI G , et al. A short and simple improved-primer extension preamplification (I-PEP) procedure for whole genome amplification (WGA) of bovine cells[J]. Anim Biotechnol, 2012, 23 (1): 24- 42.
doi: 10.1080/10495398.2011.630907
|
13 |
SUN S Q , ABOELENAIN M , ARIAD D , et al. Identifying risk variants for embryo aneuploidy using ultra-low coverage whole-genome sequencing from preimplantation genetic testing[J]. Am J Hum Genet, 2023, 110 (12): 2092- 2102.
doi: 10.1016/j.ajhg.2023.11.002
|
14 |
ANDERSSON D , AKRAP N , SVEC D , et al. Properties of targeted preamplification in DNA and cDNA quantification[J]. Expert Rev Mol Diagn, 2015, 15 (8): 1085- 1100.
doi: 10.1586/14737159.2015.1057124
|
15 |
YUAN Y , SPATE L D , REDEL B K , et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation[J]. Proc Natl Acad Sci U S A, 2017, 114 (29): E5796- E5804.
|
16 |
YOSHIOKA K , SUZUKI C , TANAKA A , et al. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium[J]. Biol Reprod, 2002, 66 (1): 112- 119.
doi: 10.1095/biolreprod66.1.112
|
17 |
ZHOU F , WANG R , YUAN P , et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation[J]. Nature, 2019, 572 (7771): 660- 664.
doi: 10.1038/s41586-019-1500-0
|
18 |
WU Y , XU X C , QI M J , et al. N6-methyladenosine regulates maternal RNA maintenance in oocytes and timely RNA decay during mouse maternal-to-zygotic transition[J]. Nat Cell Biol, 2022, 24 (6): 917- 927.
doi: 10.1038/s41556-022-00915-x
|
19 |
XU R M , ZHU Q S , ZHAO Y Y , et al. Unreprogrammed H3K9me3 prevents minor zygotic genome activation and lineage commitment in SCNT embryos[J]. Nat Commun, 2023, 14 (1): 4807.
doi: 10.1038/s41467-023-40496-3
|
20 |
LAVAGI I , KREBS S , SIMMET K , et al. Single-cell RNA sequencing reveals developmental heterogeneity of blastomeres during major genome activation in bovine embryos[J]. Sci Rep, 2018, 8 (1): 4071.
doi: 10.1038/s41598-018-22248-2
|
21 |
KOLODZIEJCZYK A A , LÖNNBERG T . Global and targeted approaches to single-cell transcriptome characterization[J]. Brief Funct Genomics, 2018, 17 (4): 209- 219.
doi: 10.1093/bfgp/elx025
|
22 |
KORENKOVÁ V , SCOTT J , NOVOSADOVÁ V , et al. Pre-amplification in the context of high-throughput qPCR gene expression experiment[J]. BMC Mol Biol, 2015, 16, 5.
doi: 10.1186/s12867-015-0033-9
|
23 |
HERNÁNDEZ-ARTEAGA S , LÓPEZ-REVILLA R . Ultrasensitive quantitation of human papillomavirus type 16 E6 oncogene sequences by nested real time PCR[J]. Infect Agent Cancer, 2010, 5, 9.
doi: 10.1186/1750-9378-5-9
|
24 |
XIAO Y , SOSA F , DE ARMAS L R , et al. An improved method for specific-target preamplification PCR analysis of single blastocysts useful for embryo sexing and high-throughput gene expression analysis[J]. J Dairy Sci, 2021, 104 (3): 3722- 3735.
doi: 10.3168/jds.2020-19497
|
25 |
ANDERSSON D , AKRAP N , SVEC D , et al. Properties of targeted preamplification in DNA and cDNA quantification[J]. Expert Rev Mol Diagn, 2015, 15 (8): 1085- 1100.
doi: 10.1586/14737159.2015.1057124
|
26 |
JANNAMAN E A , XIAO Y , HANSEN P J . Actions of colony-stimulating factor 3 on the maturing oocyte and developing embryo in cattle[J]. J Anim Sci, 2020, 98 (4): skaa115.
doi: 10.1093/jas/skaa115
|
27 |
WU K L , FAN D D , ZHAO H , et al. Dynamics of histone acetylation during human early embryogenesis[J]. Cell Discov, 2023, 9 (1): 29.
doi: 10.1038/s41421-022-00514-y
|
28 |
YANG G , ZHANG L F , LIU W Q , et al. Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer[J]. Cell Stem Cell, 2021, 28 (1): 150- 163.e5.
doi: 10.1016/j.stem.2020.09.006
|
29 |
LI L J , LAI F N , HU X Y , et al. Multifaceted SOX2-chromatin interaction underpins pluripotency progression in early embryos[J]. Science, 2023, 382 (6676): eadi5516.
doi: 10.1126/science.adi5516
|
30 |
STIRPARO G G , KUROWSKI A , YANAGIDA A , et al. OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms[J]. Proc Natl Acad Sci U S A, 2021, 118 (3): e2008890118.
doi: 10.1073/pnas.2008890118
|
31 |
LAI F N , LI L J , HU X Y , et al. NR5A2 connects zygotic genome activation to the first lineage segregation in totipotent embryos[J]. Cell Res, 2023, 33 (12): 952- 966.
doi: 10.1038/s41422-023-00887-z
|
32 |
LI X , ZOU C , LI M X , et al. Transcriptome analysis of in vitro fertilization and parthenogenesis activation during early embryonic development in pigs[J]. Genes (Basel), 2021, 12 (10): 1461.
doi: 10.3390/genes12101461
|
33 |
WEI Q Q , LI R Q , ZHONG L , et al. Lineage specification revealed by single-cell gene expression analysis in porcine preimplantation embryos[J]. Biol Reprod, 2018, 99 (2): 283- 292.
doi: 10.1093/biolre/ioy062
|
34 |
KONG Q R , YANG X , ZHANG H , et al. Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig[J]. FASEB J, 2020, 34 (1): 691- 705.
doi: 10.1096/fj.201901818RR
|
35 |
LEE M , CHOI K H , OH J N , et al. SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine pre-implantation embryo development[J]. Cell Prolif, 2021, 54 (8): e13097.
doi: 10.1111/cpr.13097
|
36 |
DE MACEDO M P , GLANZNER W G , GUTIERREZ K , et al. Simultaneous inhibition of histone deacetylases and RNA synthesis enables totipotency reprogramming in pig SCNT embryos[J]. Int J Mol Sci, 2022, 23 (22): 14142.
doi: 10.3390/ijms232214142
|