畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2496-2506.doi: 10.11843/j.issn.0366-6964.2025.05.044
收稿日期:
2024-07-01
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
周振雷
E-mail:2022007088@njau.edu.cn;zhouzl@njau.edu.cn
作者简介:
张岩岩(1997-),女,湖北襄阳人,博士生,主要从事家禽骨骼发育研究,E-mail: 2022007088@njau.edu.cn
基金资助:
ZHANG Yanyan(), GE Hongfan, ZHOU Zhenlei*(
)
Received:
2024-07-01
Online:
2025-05-23
Published:
2025-05-27
Contact:
ZHOU Zhenlei
E-mail:2022007088@njau.edu.cn;zhouzl@njau.edu.cn
摘要:
本研究旨在探究红景天苷对甲泼尼龙诱导的肉鸡股骨头坏死动物模型骨代谢的影响及其机理。将32只1日龄爱拔益加肉鸡随机分为对照组、甲泼尼龙处理组、红景天苷干预组和红景天苷对照组,每组8只。在肉鸡42日龄时,对肉鸡进行步态评分与称重后,取血液和肝脏样本进行甘油三酯和总胆固醇检测;取股骨头组织样本进行骨代谢指标检测;取股骨和胫骨进行骨密度和骨强度检测。结果显示:与甲泼尼龙处理组相比,红景天苷干预组肉鸡体重显著增加;股骨的重量、长度、杨氏模量和断裂载荷显著增加;胫骨刚度显著增加;股骨头Collagen-1和Runx2基因的转录显著上调;软骨陷窝空泡减少,软骨Collagen-2、Aggrecan和BMP2基因转录显著上调,MMP13基因转录显著下调;肝脏和血清中的甘油三酯和总胆固醇的含量显著下降;股骨头FASN和SCD1基因表达下调。综上表明, 红景天苷可以调控脂代谢和软骨基质合成,缓解甲泼尼龙诱导的肉鸡股骨头坏死。
中图分类号:
张岩岩, 葛红帆, 周振雷. 红景天苷对甲泼尼龙诱导的肉鸡股骨头坏死的影响[J]. 畜牧兽医学报, 2025, 56(5): 2496-2506.
ZHANG Yanyan, GE Hongfan, ZHOU Zhenlei. The Effect of Salidroside on Methylprednisolone Induced Femoral Head Necrosis in Broiler Chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2496-2506.
表 2
引物序列"
基因Genes | 引物序列(5′ →3′) Primer sequences | 产物长度/bp Prodduct length | 登录号 Accession No. |
Collagen-1 | F: GTCATTCCACCCCACGTCAT R: GTCATTCCACCCCACGTCAT | 164 | NM_001396622 |
Runx2 | F: TTCACAAGCATTTCATCCCTC R: TTGCGGACATACCCAGTGACA | 118 | NM_204128 |
Collagen-2 | F: ACCTACAGCGTCTTGGAGGA R: ATATCCACGCCAAACTCCTG | 155 | NM_204426 |
Aggrecan | F: TGCAAGGCAAAGTCTTCTACG R: GGCAGGGTTCAGGTAAACG | 248 | NM_001396162 |
BMP2 | F: TGGTGGAGGTGGTTCACTTGGA R: TCCCTTGCCATCATGCCCAAAC | 140 | NM_001398170 |
MMP13 | F: AGAGACCCTGGAGCACTGATGT R: GGGATCTCTGTCTCCAGCACCA | 120 | NM_001293090 |
FASN | F: TGCTATGCTTGCCAACAGGA R: ACTGTCCGTGACGAATTGCT | 128 | NM_205155 |
SCD1 | F: GATGTCATAGAGAAGGGCCAG R: GATTCATCCCAGAAGTACCAGG | 149 | DQ645535 |
GAPDH | F: GAACATCATCCCAGCGTCCA R: CGGCAGGTCAGGTCAACAAC | 132 | NM_204305 |
表 3
体重和脏器指数(${\bar x}$±s)"
指标 Index | 组别Group | P值 P value | |||
CON | MP | MP+SAL | SAL | ||
体重/g Weight | 2 383.75±124.07a | 1 881.25±131.06c | 2 106.88±103.30b | 2 300.13±116.82a | 0.000 |
肝脏指数/% Liver index | 2.43±0.20ab | 2.67±0.23a | 2.16±0.21b | 2.19±0.20ab | 0.000 |
脾脏指数/% Spleen index | 0.16±0.02a | 0.15±0.02a | 0.14±0.01a | 0.15±0.01a | 0.231 |
法氏囊指数/% Bursae index of Fabricims icius | 0.18±0.02a | 0.17±0.02a | 0.16±0.02a | 0.17±0.02a | 0.336 |
心脏指数/% Heart index | 0.49±0.04a | 0.48±0.03a | 0.45±0.03a | 0.45±0.04a | 0.055 |
表 5
骨参数检测结果(${\bar x}$±s)"
样本Samle | 指标Index | CON | MP | MP+SAL | SAL | P值P Value |
胫骨 Tibia | 重量/g | 16.09±2.89a | 11.94±2.23b | 11.69±1.29b | 16.90±2.05a | 0.01 |
长度/mm | 104.54±3.73a | 93.26±5.27b | 93.56±4.11b | 105.36±3.22a | <0.01 | |
直径/mm | 8.68±0.66a | 7.88±0.78a | 8.13±0.57a | 9.12±0.45a | 0.075 | |
骨矿物质含量/g | 3.07±0.43a | 2.51±0.58a | 2.69±0.26a | 3.06±0.34a | 0.054 | |
骨密度/(g·cm-2) | 0.21±0.01a | 0.20±0.02a | 0.21±0.01a | 0.22±0.02a | 0.923 | |
刚度/(N·mm-1) | 90.83±11.78a | 60.56±10.00b | 78.61±7.44a | 91.77±10.42a | <0.01 | |
杨氏模量/GPa | 1.32±0.11a | 0.86±0.18b | 1.03±0.14b | 1.31±0.10a | <0.01 | |
断裂载荷/N | 250.87±42.78a | 143.59±32.56b | 185.09±42.48b | 268.5±34.81a | <0.01 | |
断裂应力/MPa | 50.92±5.70a | 34.85±7.30b | 40.04±6.87b | 56.13±6.44a | <0.01 | |
断裂能/J | 0.74±0.14a | 0.54±0.09b | 0.61±0.12ab | 0.76±0.12a | 0.010 | |
股骨 Femur | 重量/g | 11.32±1.60a | 7.40±1.50c | 9.34±1.13b | 12.22±1.41a | <0.01 |
长度/mm | 73.88±1.39a | 62.96±4.71b | 69.19±5.03a | 75.25±2.54a | <0.01 | |
直径/mm | 9.45±0.92a | 8.33±0.33b | 8.59±0.71ab | 10.08±1.07a | 0.012 | |
骨矿物质含量/g | 1.94±0.36a | 1.60±0.43a | 1.62±0.27a | 2.12±0.33a | 0.122 | |
骨密度/(g·cm-2) | 0.20±0.02a | 0.20±0.03a | 0.20±0.02a | 0.21±0.02a | 0.984 | |
刚度/(N·mm-1) | 156.61±20.21a | 129.63±20.58b | 152.90±18.35ab | 171.07±24.39a | 0.002 | |
杨氏模量/GPa | 0.75±0.13a | 0.48±0.11b | 0.65±0.05a | 0.77±0.10a | <0.01 | |
断裂载荷/N | 272.69±26.88a | 170.73±21.75c | 212.46±22.64b | 279.01±20.90a | <0.01 | |
断裂应力/MPa | 39.31±4.36a | 27.05±4.44b | 31.69±3.40b | 40.63±3.90a | <0.01 | |
断裂能/J | 0.42±0.11a | 0.31±0.08a | 0.32±0.08a | 0.43±0.08a | 0.051 |
1 |
GUO Y P , TANG H H , WANG X N , et al. Clinical assessment of growth performance, bone morphometry, bone quality, and serum indicators in broilers affected by valgus-varus deformity[J]. Poult Sci, 2019, 98 (10): 4433- 4440.
doi: 10.3382/ps/pez269 |
2 |
ZHANG M , SHI C Y , ZHOU Z L , et al. Bone characteristics, histopathology, and chondrocyte apoptosis in femoral head necrosis induced by glucocorticoid in broilers[J]. Poult Sci, 2017, 96 (6): 1609- 1614.
doi: 10.3382/ps/pew466 |
3 |
KANG P D , GAO H , PEI F X , et al. Effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits[J]. Int J Exp Pathol, 2010, 91 (3): 235- 243.
doi: 10.1111/j.1365-2613.2010.00705.x |
4 | CUI Q , WANG G J , SU C C , et al. The otto aufranc award. Lovastatin prevents steroid induced adipogenesis and osteonecrosis[J]. Clin Orthop Relat Res, 1997 (344): 8- 19. |
5 |
YU Y L , WANG S J , ZHOU Z L . Cartilage homeostasis affects femoral head necrosis induced by methylprednisolone in broilers[J]. Int J Mol Sci, 2020, 21 (14): 4841.
doi: 10.3390/ijms21144841 |
6 |
LIU K P , WANG K B , WANG L G , et al. Changes of lipid and bone metabolism in broilers with spontaneous femoral head necrosis[J]. Poult Sci, 2021, 100 (3): 100808.
doi: 10.1016/j.psj.2020.10.062 |
7 |
FAN R B , LIU K P , ZHOU Z L . Abnormal lipid profile in fast-growing broilers with spontaneous femoral head necrosis[J]. Front Physiol, 2021, 12, 685968.
doi: 10.3389/fphys.2021.685968 |
8 |
YAN Y Z , WANG J H , HUANG D G , et al. Plasma lipidomics analysis reveals altered lipids signature in patients with osteonecrosis of the femoral head[J]. Metabolomics, 2022, 18 (2): 14.
doi: 10.1007/s11306-022-01872-0 |
9 |
CHANG C , GREENSPAN A , GERSHWIN M E . The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis[J]. J Autoimmun, 2020, 110, 102460.
doi: 10.1016/j.jaut.2020.102460 |
10 |
PECKETT A J , WRIGHT D C , RIDDELL M C . The effects of glucocorticoids on adipose tissue lipid metabolism[J]. Metabolism, 2011, 60 (11): 1500- 1510.
doi: 10.1016/j.metabol.2011.06.012 |
11 |
ROQUETA-RIVERA M , ESQUEJO R M , PHELAN P E , et al. SETDB2 links glucocorticoid to lipid metabolism through Insig2a regulation[J]. Cell Metab, 2016, 24 (3): 474- 484.
doi: 10.1016/j.cmet.2016.07.025 |
12 |
WANG A , REN M , WANG J C . The pathogenesis of steroid-induced osteonecrosis of the femoral head: a systematic review of the literature[J]. Gene, 2018, 671, 103- 109.
doi: 10.1016/j.gene.2018.05.091 |
13 |
TEITELBAUM S L . Bone resorption by osteoclasts[J]. Science, 2000, 289 (5484): 1504- 1508.
doi: 10.1126/science.289.5484.1504 |
14 | RECIO M C , GINER R M , MÁÑEZ S . Immunmodulatory and antiproliferative properties of Rhodiola species[J]. Planta Med, 2016, 82 (11-12): 952- 960. |
15 |
HU M L , ZHANG D R , XU H Y , et al. Salidroside activates the AMP-activated protein kinase pathway to suppress nonalcoholic Steatohepatitis in mice[J]. Hepatology, 2021, 74 (6): 3056- 3073.
doi: 10.1002/hep.32066 |
16 |
CUI Z F , JIN N N , AMEVOR F K , et al. Dietary supplementation of salidroside alleviates liver lipid metabolism disorder and inflammatory response to promote hepatocyte regeneration via PI3K/AKT/Gsk3-β pathway[J]. Poult Sci, 2022, 101 (9): 102034.
doi: 10.1016/j.psj.2022.102034 |
17 |
XIE B C , ZHOU H , LIU H Y , et al. Salidroside alleviates dexamethasone-induced inhibition of bone formation via transforming growth factor-beta/Smad2/3 signaling pathway[J]. Phytother Res, 2023, 37 (5): 1938- 1950.
doi: 10.1002/ptr.7711 |
18 |
ZHANG Y Y , GE H F , YU Y L , et al. Dietary salidroside supplementation improves meat quality and antioxidant capacity and regulates lipid metabolism in broilers[J]. Food Chem X, 2024, 22, 101406.
doi: 10.1016/j.fochx.2024.101406 |
19 |
KESTIN S C , KNOWLES T G , TINCH A E , et al. Prevalence of leg weakness in broiler chickens and its relationship with genotype[J]. Vet Rec, 1992, 131 (9): 190- 194.
doi: 10.1136/vr.131.9.190 |
20 |
YU Y L , LIN L S , LIU K P , et al. Effects of simvastatin on cartilage homeostasis in steroid-induced osteonecrosis of femoral head by inhibiting glucocorticoid receptor[J]. Cells, 2022, 11 (24): 3945.
doi: 10.3390/cells11243945 |
21 |
LIU K P , FAN R B , ZHOU Z L . Endoplasmic reticulum stress, chondrocyte apoptosis and oxidative stress in cartilage of broilers affected by spontaneous femoral head necrosis[J]. Poult Sci, 2021, 100 (8): 101258.
doi: 10.1016/j.psj.2021.101258 |
22 |
WOJCIECHOWSKA-PUCHAŁKA J , CALIK J , KRAWCZYK J , et al. The effect of caponization on bone homeostasis of crossbred roosters. I. Analysis of tibia bone mineralization, densitometric, osteometric, geometric and biomechanical properties[J]. Sci Rep, 2023, 13 (1): 14512.
doi: 10.1038/s41598-023-41806-x |
23 |
ZHENG H X , QI S S , CHEN C . Salidroside improves bone histomorphology and prevents bone loss in ovariectomized diabetic rats by upregulating the OPG/RANKL ratio[J]. Molecules, 2018, 23 (9): 2398.
doi: 10.3390/molecules23092398 |
24 |
CHEN J J , ZHANG N F , MAO G X , et al. Salidroside stimulates osteoblast differentiation through BMP signaling pathway[J]. Food Chem Toxicol, 2013, 62, 499- 505.
doi: 10.1016/j.fct.2013.09.019 |
25 |
SUN M , LU Z H , CAI P A , et al. Salidroside enhances proliferation and maintains phenotype of articular chondrocytes for autologous chondrocyte implantation (ACI) via TGF-β/Smad3 Signal[J]. Biomed Pharmacother, 2020, 122, 109388.
doi: 10.1016/j.biopha.2019.109388 |
26 |
WU M Z , HU R , WANG J W , et al. Salidroside suppresses IL-1β-induced apoptosis in chondrocytes via phosphatidylinositol 3-kinases (PI3K)/Akt signaling inhibition[J]. Med Sci Monit, 2019, 25, 5833- 5840.
doi: 10.12659/MSM.917851 |
27 |
JONASON J H , XIAO G , ZHANG M , et al. Post-translational regulation of Runx2 in bone and cartilage[J]. J Dent Res, 2009, 88 (8): 693- 703.
doi: 10.1177/0022034509341629 |
28 |
TIAN L , YU X J . Lipid metabolism disorders and bone dysfunction--interrelated and mutually regulated (review)[J]. Mol Med Rep, 2015, 12 (1): 783- 794.
doi: 10.3892/mmr.2015.3472 |
29 |
DURING A , PENEL G , HARDOUIN P . Understanding the local actions of lipids in bone physiology[J]. Prog Lipid Res, 2015, 59, 126- 146.
doi: 10.1016/j.plipres.2015.06.002 |
30 |
CHEN X , WANG C Y , ZHANG K , et al. Reduced femoral bone mass in both diet-induced and genetic hyperlipidemia mice[J]. Bone, 2016, 93, 104- 112.
doi: 10.1016/j.bone.2016.09.016 |
31 | PACKIALAKSHMI B , LIYANAGE R , LAY J O Jr , et al. Prednisolone-induced predisposition to femoral head separation and the accompanying plasma protein changes in chickens[J]. Biomark Insights, 2015, 10, 1- 8. |
32 | PACKIALAKSHMI B , LIYANAGE R , LAY J O Jr , et al. Proteomic changes in the plasma of broiler chickens with femoral head necrosis[J]. Biomark Insights, 2016, 11, 55- 62. |
[1] | 周锐, 吴德, 车炼强, 林燕, 冯斌, 方正锋. N6-腺苷甲基化调控脂肪生成的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 1995-2003. |
[2] | 朱云, 王钰明, 孙晓晓, 陈辉, 赵峰, 解竞静, 陈一凡, 萨仁娜. 低蛋白多元化饲粮添加玉米蛋白粉对白羽肉鸡生长性能和消化特性的影响[J]. 畜牧兽医学报, 2025, 56(4): 1802-1812. |
[3] | 赵少猛, 董瑞玲, 刘大伟, 营凡, 李森, 赵桂苹, 张敏红, 文杰, 冯京海. 广明2号肉鸡蛋白质需要量预测模型的研究及验证[J]. 畜牧兽医学报, 2025, 56(3): 1313-1323. |
[4] | 苏蒙, 刘莎, 宋丹丽, 高倩梅, 郑麦青, 文杰, 赵桂苹, 李庆贺. 基于转录组测序筛选肉鸡腹水综合征相关候选基因[J]. 畜牧兽医学报, 2025, 56(2): 559-570. |
[5] | 杭振宇, 汪子怡, 张林, 邢通, 赵良, 高峰. 不同来源玉米28日龄白羽肉鸡标准回肠氨基酸消化率评定和预测方程的建立[J]. 畜牧兽医学报, 2025, 56(2): 722-736. |
[6] | 王盛琪, 季新雨, 黄福青, 胡曼丽, 王柔淇, 耿玉欣, 孙迎雪, 齐智利, 张鑫. 添加红景天苷的全价粮对犬血液生化指标和肝转录组学的影响[J]. 畜牧兽医学报, 2025, 56(1): 455-465. |
[7] | 刘馨蔓, 周鸿缘, 桑锐, 葛冰洁, 闫可心, 王巍, 于明弘, 刘晓童, 邱谦, 张雪梅. 蒲公英甾醇对AFB1性肝损伤肉鸡肝组织氧化应激的影响[J]. 畜牧兽医学报, 2024, 55(9): 4141-4152. |
[8] | 李瑶, 贾蕊, 李杰, 滚双宝, 杨巧丽, 王龙龙, 张鹏霞, 高小莉, 黄晓宇. 低温对合作猪脂肪组织形态、脂代谢相关基因表达和酶活性及AMPK/PGC-1α通路的影响[J]. 畜牧兽医学报, 2024, 55(8): 3418-3426. |
[9] | 王一诺, 徐丹, 杨建华, 刘洋, 田尧夫, 赵小玲. 基于超声波测量胸肌厚预测肉鸡产肉性能的选育方法研究[J]. 畜牧兽医学报, 2024, 55(7): 2901-2912. |
[10] | 李明, 崔洪伟, 高婕, 安乐乐, 李松励, 饶正华. 白羽肉鸡小肠内容物中致病性大肠杆菌的鉴定及基因组分析[J]. 畜牧兽医学报, 2024, 55(6): 2692-2700. |
[11] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[12] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[13] | 梁灿新, 郑小雪, 舒雪利, 周婉怡, 廖明, 曹伟胜. 与鸡内皮血管瘤病例相关的禽白血病病毒K亚群分离及其gp85基因演化分析[J]. 畜牧兽医学报, 2024, 55(3): 1127-1136. |
[14] | 宋明强, 解竞静, 欧娟, 王钰明, 侯嘉, 谭高明, 田凯, 朱云, 萨仁娜, 赵峰. 盐酸不溶灰分测定方法影响肉鸡饲粮代谢能准确性的比较研究[J]. 畜牧兽医学报, 2024, 55(2): 619-628. |
[15] | 王栋, 柳可欣, 何炎峻, 邓守翔, 刘云, 马卫明. 饲粮中添加腐殖酸钠对鼠伤寒沙门菌感染肉鸡肝组织炎症和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(2): 629-639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||