畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2481-2495.doi: 10.11843/j.issn.0366-6964.2025.05.043
赵莹1(), 王靖雷1, 王萌1, 王立斌1,2, 张倩1, 李志杰1, 马鑫1, 余四九1,2, 潘阳阳1,2,*(
)
收稿日期:
2024-07-03
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
潘阳阳
E-mail:1660743533@qq.com;panyangyang_2007@126.com
作者简介:
赵莹(1994-),女,黑龙江哈尔滨人,硕士生,主要从事兽医临床产科学研究,E-mail:1660743533@qq.com
基金资助:
ZHAO Ying1(), WANG Jinglei1, WANG Meng1, WANG Libin1,2, ZHANG Qian1, LI Zhijie1, MA Xin1, YU Sijiu1,2, PAN Yangyang1,2,*(
)
Received:
2024-07-03
Online:
2025-05-23
Published:
2025-05-27
Contact:
PAN Yangyang
E-mail:1660743533@qq.com;panyangyang_2007@126.com
摘要:
本试验旨在制备负载连翘酯苷A(forsythoside A,FTA)和山奈酚(kaempferol,KPF)的乳源外泌体(milk-derived EVs,miEVs)递药系统,并体外评价其对脂多糖(lipopolysaccharides,LPS)诱导牛乳腺上皮细胞(mammary alveolar cells-large T,MAC-T)炎症模型的细胞迁移效果及相关炎性因子的影响。利用前期已建立并优化的乙酸法提取乳源外泌体,低温超声共孵育的方法制备负载FTA乳源外泌体(FTA-miEVs)和负载KPF乳源外泌体(KPF-miEVs),以及建立炎症模型,并通过透射电子显微镜(transmission electron microscope,TEM)和免疫印迹(Western blot)方法评估制备效果,液质联用方法进行载药量测定,免疫荧光和划痕试验观察炎症模型对负载抗炎药物的乳源外泌体摄取,及炎症模型的细胞迁移效果的影响,酶联免疫吸附测定(enzyme linked immunosorbent assay,ELISA)和实时荧光定量PCR(real-time quantitative PCR,RT-qPCR)方法验证负载抗炎药物的乳源外泌体对炎症模型中相关炎性因子分泌及基因表达水平的影响。结果表明:FTA-miEVs和KPF-miEVs均具有外泌体典型结构,外形呈圆形,有部分凹陷,似“茶托”形结构;均可表达表面及内部特异性标记蛋白白细胞分化抗原81(cluster of differentiation 81,CD-81)和热休克蛋白70(heat shock protein 70,HSP70);载药量分别为0.78%和9.79%;在8 h内,LPS诱导的MAC-T炎症模型对其摄取效果良好;且在24 h时,FTA-miEVs和KPF-miEVs对炎症模型细胞迁移的抑制率分别为608.48%和522.88%,显著高于单独使用miEVs、FTA和KPF的效果;其对炎症模型中白细胞介素-6(interleukin-6,IL-6)、白细胞介素-8(interleukin-8,IL-8)和肿瘤坏死因子α(tumor necrosis factor α,TNF-α)的分泌及基因表达水平均优于单独使用miEVs、FTA和KPF。综上所述,本试验成功制备FTA-miEVs和KPF-miEVs递药系统,综合结果发现在同等药量下可提高FTA和KPF的抗炎效果,为外泌体在药物递送系统的制备及临床应用提供新的思路。
中图分类号:
赵莹, 王靖雷, 王萌, 王立斌, 张倩, 李志杰, 马鑫, 余四九, 潘阳阳. 乳源外泌体包载连翘酯苷A和山奈酚的制备、表征及体外抗炎效果评价[J]. 畜牧兽医学报, 2025, 56(5): 2481-2495.
ZHAO Ying, WANG Jinglei, WANG Meng, WANG Libin, ZHANG Qian, LI Zhijie, MA Xin, YU Sijiu, PAN Yangyang. Preparation and Characterization of Forsythiaside A and Kaempferol Encapsulated in Milk-derived Exosomes and Evaluation of Anti-inflammatory Effects in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2481-2495.
表 2
测量对照组、miEVs组、FTA组和FTA-miEVs组的划痕值及计算划痕变化值"
组别 Constituencies | 划痕值 Scratch value | 划痕变化值 Scratch change value | 迁移抑制率/% Migration inhibition rate |
对照组0 h Control group 0 h | 68 027 | ||
miEVs组0 h miEVs group 0 h | 44 880 | ||
FTA组0 h FTA group 0 h | 60 903 | ||
FTA-miEVs组0 h FTA-miEVs group 0 h | 69 474 | ||
对照组24 h Control group 24 h | 40 811 | ||
miEVs组24 h miEVs group 24 h | 91 309 | ||
FTA组24 h FTA group 24 h | 132 700 | ||
FTA-miEVs组24 h FTA-miEVs group 24 h | 262 288 | ||
对照组 Control group | 27 216 | ||
miEVs组 miEVs group | 40 726 | 49.64 | |
FTA组 FTA group | 71 797 | 163.58 | |
FTA-miEVs组 FTA-miEVs group | 192 814 | 608.48 |
表 3
测量对照组、miEVs组、KPF组和KPF-miEVs组的划痕值及计算划痕变化值"
组别 Group | 划痕值 Scratch value | 划痕变化值 Scratch change value | 迁移抑制率/% Migration inhibition rate |
对照组0 h Control group 0 h | 70 066 | ||
miEVs组0 h miEVs group 0 h | 40 998 | ||
KPF组0 h KPF group 0 h | 62 304 | ||
KPF-miEVs组0 h KPF-miEVs group 0 h | 75 478 | ||
对照组24 h Control group 24 h | 38 090 | ||
miEVs组24 h miEVs group 24 h | 88 719 | ||
KPF组24 h KPF group 24 h | 134 567 | ||
KPF-miEVs组24 h KPF-miEVs group 24 h | 274 649 | ||
对照组 Control group | 31 976 | ||
miEVs组 miEVs group | 46 429 | 45.20 | |
KPF组 KPF group | 72 263 | 125.99 | |
KPF-miEVs组 KPF-miEVs group | 199 171 | 522.88 |
1 | 刘玉峰, 朱丽君, 孙珊珊, 等. 连翘酯苷A的体内外代谢及药动学研究进展[J]. 辽宁大学学报: 自然科学版, 2019, 46 (1): 51- 59. |
LIU Y F , ZHU L J , SUN S S , et al. Research progress on metabolism and pharmacokinetics of forsythoside A[J]. Journal of Liaoning University: Natural Sciences Edition, 2019, 46 (1): 51- 59. | |
2 |
QUAN X H , LIU H H , YE D M , et al. Forsythoside A alleviates high glucose-induced oxidative stress and inflammation in podocytes by inactivating MAPK signaling via MMP12 inhibition[J]. Diabetes Metab Syndr Obes, 2021, 14, 1885- 1895.
doi: 10.2147/DMSO.S305092 |
3 |
WANG F , CAO G S , LI Y , et al. Characterization of forsythoside A metabolites in rats by a combination of UHPLC-LTQ-Orbitrap mass spectrometer with multiple data processing techniques[J]. Biomed Chromatogr, 2018, 32 (5): e4164.
doi: 10.1002/bmc.4164 |
4 |
SHEN P X , YU J C , LONG X C , et al. Effect of forsythoside A on the transcriptional profile of bovine mammary epithelial cells challenged with lipoteichoic acid[J]. Reprod Domest Anim, 2023, 58 (1): 89- 96.
doi: 10.1111/rda.14265 |
5 | XU J , YIN P , LIU X W , et al. Forsythoside A inhibits apoptosis and autophagy induced by infectious bronchitis virus through regulation of the PI3K/Akt/NF-κB pathway[J]. Microbiol Spectr, 2023, 11 (6): e01921- e01923. |
6 |
ZHANG X T , DING Y , KANG P , et al. Forsythoside A modulates zymosan-induced peritonitis in mice[J]. Molecules, 2018, 23 (3): 593.
doi: 10.3390/molecules23030593 |
7 |
WANG C Y , CHEN S S , GUO H Y , et al. Forsythoside A mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation[J]. Int J Biol Sci, 2022, 18 (5): 2075- 2090.
doi: 10.7150/ijbs.69714 |
8 |
ZHANG X , ZHANG H Q , GAO Y K , et al. Forsythoside A regulates autophagy and apoptosis through the AMPK/mTOR/ULK1 pathway and alleviates inflammatory damage in MAC-T cells[J]. Int Immunopharmacol, 2023, 118, 110053.
doi: 10.1016/j.intimp.2023.110053 |
9 |
PERIFERAKIS A , PERIFERAKIS K , BADARAU I A , et al. Kaempferol: antimicrobial properties, sources, clinical, and traditional applications[J]. Int J Mol Sci, 2022, 23 (23): 15054.
doi: 10.3390/ijms232315054 |
10 |
ALMATROUDI A , ALLEMAILEM K S , ALWANIAN W M , et al. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways[J]. Int J Mol Sci, 2023, 24 (10): 8630.
doi: 10.3390/ijms24108630 |
11 |
YANG L , GAO Y C , BAJPAI V K , et al. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives[J]. Crit Rev Food Sci Nutr, 2023, 63 (16): 2773- 2789.
doi: 10.1080/10408398.2021.1980762 |
12 |
ALAM W , KHAN H , SHAH M A , et al. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing[J]. Molecules, 2020, 25 (18): 4073.
doi: 10.3390/molecules25184073 |
13 |
ULLAH A , MUNIR S , BADSHAH S L , et al. Important flavonoids and their role as a therapeutic agent[J]. Molecules, 2020, 25 (22): 5243.
doi: 10.3390/molecules25225243 |
14 |
ZHAO L L , YUAN X Y , WANG J B , et al. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs[J]. Bioorg Med Chem, 2019, 27 (5): 677- 685.
doi: 10.1016/j.bmc.2019.01.027 |
15 |
IMRAN M , RAUF A , SHAH Z A , et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review[J]. Phytother Res, 2019, 33 (2): 263- 275.
doi: 10.1002/ptr.6227 |
16 |
YUAN P , SUN X F , LIU X , et al. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway[J]. Phytomedicine, 2021, 86, 153555.
doi: 10.1016/j.phymed.2021.153555 |
17 |
MARSH S R , PRIDHAM K J , JOURDAN J , et al. Novel protocols for scalable production of high quality purified small extracellular vesicles from bovine milk[J]. Nanotheranostics, 2021, 5 (4): 488- 498.
doi: 10.7150/ntno.62213 |
18 |
RASHIDI M , BIJARI S , KHAZAEI A H , et al. The role of milk-derived exosomes in the treatment of diseases[J]. Front Genet, 2022, 13, 1009338.
doi: 10.3389/fgene.2022.1009338 |
19 |
AARTS J , BOLEIJ A , PIETERS B C H , et al. Flood control: how milk-derived extracellular vesicles can help to improve the intestinal barrier function and break the gut-joint axis in rheumatoid arthritis[J]. Front Immunol, 2021, 12, 703277.
doi: 10.3389/fimmu.2021.703277 |
20 |
AHADIAN S , FINBLOOM J A , MOFIDFAR M , et al. Micro and nanoscale technologies in oral drug delivery[J]. Adv Drug Deliv Rev, 2020, 157, 37- 62.
doi: 10.1016/j.addr.2020.07.012 |
21 |
WU L , WANG L L , LIU X , et al. Milk-derived exosomes exhibit versatile effects for improved oral drug delivery[J]. Acta Pharm Sin B, 2022, 12 (4): 2029- 2042.
doi: 10.1016/j.apsb.2021.12.015 |
22 |
SALEHI M , NEGAHDARI B , MEHRYAB F , et al. Milk-derived extracellular vesicles: biomedical applications, current challenges, and future perspectives[J]. J Agric Food Chem, 2024, 72 (15): 8304- 8331.
doi: 10.1021/acs.jafc.3c07899 |
23 |
KIM H , JANG H , CHO H , et al. Recent advances in exosome-based drug delivery for cancer therapy[J]. Cancers (Basel), 2021, 13 (17): 4435.
doi: 10.3390/cancers13174435 |
24 |
JANG H , KIM H , KIM E H , et al. Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery[J]. Biomater Res, 2023, 27 (1): 124.
doi: 10.1186/s40824-023-00456-w |
25 | LI Y T , XING L Y , WANG L L , et al. Milk-derived exosomes as a promising vehicle for oral delivery of hydrophilic biomacromolecule drugs[J]. Asian J Pharm Sci, 2023, 18 (2): 100797. |
26 | 赵莹, 王靖雷, 王萌, 等. 奶牛乳源外泌体提取方法的优化及效果评价[J]. 动物营养学报, 2024, 36 (2): 1265- 1276. |
ZHAO Y , WANG J L , WANG M , et al. Optimization and evaluation of extraction methods of milk exosomes from dairy cows[J]. Chinese Journal of Animal Nutrition, 2024, 36 (2): 1265- 1276. | |
27 |
WANG M Q , ZHOU C H , CONG S , et al. Lipopolysaccharide inhibits triglyceride synthesis in dairy cow mammary epithelial cells by upregulating miR-27a-3p, which targets the PPARG gene[J]. J Dairy Sci, 2021, 104 (1): 989- 1001.
doi: 10.3168/jds.2020-18270 |
28 |
TONG C , CHEN T , CHEN Z W , et al. Forsythiaside a plays an anti-inflammatory role in LPS-induced mastitis in a mouse model by modulating the MAPK and NF-κB signaling pathways[J]. Res Vet Sci, 2021, 136, 390- 395.
doi: 10.1016/j.rvsc.2021.03.020 |
29 |
ZHANG J L , ZHANG Y , HUANG H L , et al. Forsythoside A inhibited S. aureus stimulated inflammatory response in primary bovine mammary epithelial cells[J]. Microb Pathog, 2018, 116, 158- 163.
doi: 10.1016/j.micpath.2018.01.002 |
30 |
LIU J J , GAO Y K , ZHANG H Q , et al. Forsythiaside A attenuates mastitis via PINK1/Parkin-mediated mitophagy[J]. Phytomedicine, 2024, 125, 155358.
doi: 10.1016/j.phymed.2024.155358 |
31 |
LEE C , YOON S , MOON J O . Kaempferol suppresses carbon tetrachloride-induced liver damage in rats via the MAPKs/NF-κB and AMPK/Nrf2 signaling pathways[J]. Int J Mol Sci, 2023, 24 (8): 6900.
doi: 10.3390/ijms24086900 |
32 |
ZHU X , WANG X L , YING T H , et al. Kaempferol alleviates the inflammatory response and stabilizes the pulmonary vascular endothelial barrier in LPS-induced sepsis through regulating the SphK1/S1P signaling pathway[J]. Chem Biol Interact, 2022, 368, 110221.
doi: 10.1016/j.cbi.2022.110221 |
33 |
DONOSO-MENESES D , FIGUEROA-VALDÉS A I , KHOURY M , et al. Oral administration as a potential alternative for the delivery of small extracellular vesicles[J]. Pharmaceutics, 2023, 15 (3): 716.
doi: 10.3390/pharmaceutics15030716 |
34 |
DEL POZO-ACEBO L , DE LAS HAZAS M C L , TOMÉ-CARNEIRO J , et al. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy[J]. Int J Mol Sci, 2021, 22 (3): 1105.
doi: 10.3390/ijms22031105 |
35 |
MUNIR J , NGU A , WANG H C , et al. Review: milk small extracellular vesicles for use in the delivery of therapeutics[J]. Pharm Res, 2023, 40 (4): 909- 915.
doi: 10.1007/s11095-022-03404-w |
36 |
MEHRYAB F , RABBANI S , SHAHHOSSEINI S , et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges[J]. Acta Biomater, 2020, 113, 42- 62.
doi: 10.1016/j.actbio.2020.06.036 |
37 |
吕田田, 余海艳, 薛丙权, 等. 负载连翘苷的外泌体递药系统制备及体外评价[J]. 中国新药杂志, 2022, 31 (1): 89- 94.
doi: 10.3969/j.issn.1003-3734.2022.01.013 |
LÜ T T , YU Y H , XUE B Q , et al. Preparation and in vitro evaluation of phillyrin-loaded exosomal drug delivery system[J]. Chinese Journal of New Drugs, 2022, 31 (1): 89- 94.
doi: 10.3969/j.issn.1003-3734.2022.01.013 |
|
38 |
WANG Y T , HUO Y M , ZHAO C Y , et al. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy[J]. J Control Release, 2024, 368, 170- 183.
doi: 10.1016/j.jconrel.2024.02.015 |
39 |
GUAN P F , FAN L , ZHU Z B , et al. M2 microglia-derived exosome-loaded electroconductive hydrogel for enhancing neurological recovery after spinal cord injury[J]. J Nanobiotechnology, 2024, 22 (1): 8.
doi: 10.1186/s12951-023-02255-w |
40 |
ALBALADEJO-GARCÍA V , MORÁN L , SANTOS-COQUILLAT A , et al. Curcumin encapsulated in milk small extracellular vesicles as a nanotherapeutic alternative in experimental chronic liver disease[J]. Biomed Pharmacother, 2024, 173, 116381.
doi: 10.1016/j.biopha.2024.116381 |
41 |
WANG C , LI M , XIA X H , et al. Construction of exosome-loaded LL-37 and its protection against zika virus infection[J]. Antiviral Res, 2024, 225, 105855.
doi: 10.1016/j.antiviral.2024.105855 |
42 |
WEI H X , CHEN J Y , WANG S L , et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro[J]. Int J Nanomedicine, 2019, 14, 8603- 8610.
doi: 10.2147/IJN.S218988 |
43 | KANDIMALLA R , AQIL F , ALHAKEEM S S , et al. Targeted oral delivery of paclitaxel using colostrum-derived exosomes[J]. Cancers(Basel), 2021, 13 (15): 3700. |
[1] | 王靖, 关淑文, 赵小博, 王琳玮, 郭刚, 蒋林树. 竹叶黄酮对H2O2诱导奶牛乳腺上皮细胞焦亡的保护作用[J]. 畜牧兽医学报, 2025, 56(1): 281-294. |
[2] | 李相辰, 王林楠, 于正青, 张莉, 杨晨晨, 宋亮丽. 槲皮素抑制自噬恢复LTA诱导的奶牛乳腺上皮细胞紧密连接功能[J]. 畜牧兽医学报, 2024, 55(9): 3887-3896. |
[3] | 付艺乾, 梁东阁, 王铭洋, 潘佳佳, 杨彦宾, 曾磊, 康相涛. 干扰素调节因子敲减细胞系的构建及其对猪伪狂犬病病毒增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4100-4109. |
[4] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[5] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[6] | 张梓璇, 张颖, 李志军, 杨婧玲, 蒋子豪, 黄华敏, 齐雪峰. 牛病毒性腹泻病毒诱导铁死亡对其复制水平的影响[J]. 畜牧兽医学报, 2024, 55(12): 5716-5724. |
[7] | 刘义钢, 马玉辉, 冯琦, 马雪连, 李娜, 孙亚伟, 于维浩, 姚刚. 肢体成角畸形马驹及其母马的血液生理生化、炎性因子和激素变化研究[J]. 畜牧兽医学报, 2024, 55(12): 5854-5865. |
[8] | 丁修虎, 林志平, 赵芳, 陈坤琳, 仲跻峰, 张燕, 高运东, 李惠侠, 王慧利, 张建丽, 丁强. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55(10): 4475-4488. |
[9] | 蔡明玉, 张海龙, 海珍珍, 乔亚蕊, 杜军, 周学章. 重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞炎症反应的分子机制[J]. 畜牧兽医学报, 2023, 54(4): 1679-1689. |
[10] | 苏丹, 文晓宾, 马腾, 钟儒清, 王阳, 陈亮. 羟基酪醇对肉仔鸡生长性能、抗氧化能力和肠道炎性因子的影响[J]. 畜牧兽医学报, 2023, 54(11): 4851-4859. |
[11] | 孟梅娟, 汪艳, 霍然, 李雪睿, 常广军, 沈向真. 抑制PERK对LPS诱导的奶牛乳腺上皮细胞自噬的影响[J]. 畜牧兽医学报, 2023, 54(1): 351-360. |
[12] | 李林, 曹萌, 宫彬彬, 赵梅, 王婕, 张晓辉. 丁酸钠通过AMPK通路调控LPS造成牛乳腺上皮细胞脂代谢紊乱的作用机制[J]. 畜牧兽医学报, 2022, 53(9): 3221-3230. |
[13] | 刘丽华, 钟震宇, 郑玉杰, 王昕. lncRNA EPB41L4A-AS通过调控ErbB3抑制奶牛乳腺上皮细胞增殖的研究[J]. 畜牧兽医学报, 2022, 53(7): 2152-2159. |
[14] | 郭大伟, 侯思鲁, 池宇佳, 于非可, 尉啸涵, 邓倩, 肖传明, 刘晓晔, 董虹. 芪英汤和子甘汤中药复方促进母猪繁殖性能和断奶仔猪生长性能的临床研究[J]. 畜牧兽医学报, 2022, 53(6): 1994-2004. |
[15] | 丁军, 付子琳, 和俊豪, 段晓微, 马露, 卜登攀. 乳源外泌体研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1019-1029. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||