畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1779-1790.doi: 10.11843/j.issn.0366-6964.2025.04.026
王昕昕(), 刘小英(
), 王宜, 王芳, 赵晗, 杜志强, 杨彩侠*(
)
收稿日期:
2024-06-14
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
杨彩侠
E-mail:wxx_wang_xinxin@163.com;1552524897@qq.com;caixiayang@yangtzeu.edu.cn
作者简介:
王昕昕(1999-), 女, 山西长治人, 硕士生, 主要从事生殖生理研究, E-mail: wxx_wang_xinxin@163.com王昕昕和刘小英为同等贡献作者
WANG Xinxin(), LIU Xiaoying(
), WANG Yi, WANG Fang, ZHAO Han, DU Zhiqiang, YANG Caixia*(
)
Received:
2024-06-14
Online:
2025-04-23
Published:
2025-04-28
Contact:
YANG Caixia
E-mail:wxx_wang_xinxin@163.com;1552524897@qq.com;caixiayang@yangtzeu.edu.cn
摘要:
旨在揭示猪睾丸支持细胞对急性热应激的代谢应答。本研究于急性热应激前(Control组)、急性热应激(43 ℃,0.5 h)刚结束(HS0.5组)和急性热应激后恢复36 h(HS0.5-R36组)收集猪睾丸支持细胞(每组3个重复)进行液相质谱(LC-MS/MS)检测,ELISA验证差异代谢物。通过CCK-8、EdU和Annexin V FITC/PI试剂盒检测关键差异代谢物对猪睾丸支持细胞的细胞活力、细胞增殖和细胞凋亡效应。利用ROS、RH123和Mito Tracker染色检测细胞ROS水平、线粒体分布与线粒体膜电位情况。结果,急性热应激前后(HS0.5 vs. Control)、恢复36 h相对急性热应激刚结束(HS0.5-R36 vs. HS0.5)、恢复36 h相对急性热应激前(HS0.5-R36 vs. Control)分别诱导33个、57个和115个显著差异(P < 0.05;VIP>1.00)二级代谢物。通路富集分析显示,显著差异代谢物主要参与牛磺酸和亚牛磺酸代谢等通路。ELISA验证结果显示,急性热应激显著降低牛磺酸和γ-氨基丁酸水平,与代谢组检测的变化趋势一致。HS0.5-R36 vs. Control牛磺酸下降约5.7 μmol·L-1,而添加5.7 μmol·L-1牛磺酸处理猪睾丸支持细胞48 h显著增加细胞存活率、促进增殖、抑制凋亡和增强线粒体功能(P < 0.05)。急性热应激显著改变猪睾丸支持细胞的代谢,显著降低的牛磺酸部分介导了急性热应激对猪睾丸支持细胞的功能损伤。本研究结果为猪睾丸支持细胞热应激损伤拯救提供了新的参考。
中图分类号:
王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790.
WANG Xinxin, LIU Xiaoying, WANG Yi, WANG Fang, ZHAO Han, DU Zhiqiang, YANG Caixia. Acute Heat Stress Affects the Functions of Porcine Sertoli Cells via Decreasing Taurine Level[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1779-1790.
1 |
PARRISH J J , WILLENBURG K L , GIBBS K M , et al. Scrotal insulation and sperm production in the boar[J]. Mol Reprod Dev, 2017, 84 (9): 969- 978.
doi: 10.1002/mrd.22841 |
2 |
LI C , WANG Y , LI L , et al. Betaine protects against heat exposure-induced oxidative stress and apoptosis in bovine mammary epithelial cells via regulation of ROS production[J]. Cell Stress Chaperones, 2019, 24 (2): 453- 460.
doi: 10.1007/s12192-019-00982-4 |
3 |
CHEN K L , WANG H L , JIANG L Z , et al. Heat stress induces apoptosis through disruption of dynamic mitochondrial networks in dairy cow mammary epithelial cells[J]. In Vitro Cell Dev Biol Anim, 2020, 56 (4): 322- 331.
doi: 10.1007/s11626-020-00446-5 |
4 |
DURAIRAJANAYAGAM D , AGARWAL A , ONG C . Causes, effects and molecular mechanisms of testicular heat stress[J]. Reprod Biomed Online, 2015, 30 (1): 14- 27.
doi: 10.1016/j.rbmo.2014.09.018 |
5 |
KIM B , PARK K , RHEE K . Heat stress response of male germ cells[J]. Cell Mol Life Sci, 2013, 70 (15): 2623- 2636.
doi: 10.1007/s00018-012-1165-4 |
6 |
RIZZOTO G , BOE-HANSEN G , KLEIN C , et al. Acute mild heat stress alters gene expression in testes and reduces sperm quality in mice[J]. Theriogenology, 2020, 158, 375- 381.
doi: 10.1016/j.theriogenology.2020.10.002 |
7 |
WANG S H , CHENG C Y , TANG P C , et al. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens[J]. PLoS One, 2015, 10 (5): e0125816.
doi: 10.1371/journal.pone.0125816 |
8 |
CHEN S R , LIU Y X . Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling[J]. Reproduction, 2015, 149 (4): R159- R167.
doi: 10.1530/REP-14-0481 |
9 |
NI F D , HAO S L , YANG W X . Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis[J]. Cell Death Dis, 2019, 10 (8): 541.
doi: 10.1038/s41419-019-1782-z |
10 |
YANG C X , CHEN L , YANG Y W , et al. Acute heat stress reduces viability but increases lactate secretion of porcine immature Sertoli cells through transcriptome reprogramming[J]. Theriogenology, 2021, 173, 183- 192.
doi: 10.1016/j.theriogenology.2021.06.024 |
11 |
WEST P R , WEIR A M , SMITH A M , et al. Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics[J]. Toxicol Appl Pharmacol, 2010, 247 (1): 18- 27.
doi: 10.1016/j.taap.2010.05.007 |
12 |
REVEGLIA P , RAIMONDO M L , MASI M , et al. Untargeted and targeted LC-MS/MS based metabolomics study on in vitro culture of Phaeoacremonium species[J]. J Fungi (Basel), 2022, 8 (1): 55.
doi: 10.3390/jof8010055 |
13 |
AN X , LI Q , CHEN N , et al. Effects of Pgam1-mediated glycolysis pathway in Sertoli cells on Spermatogonial stem cells based on transcriptomics and energy metabolomics[J]. Front Vet Sci, 2022, 9, 992877.
doi: 10.3389/fvets.2022.992877 |
14 |
YANG Y W , CHEN L , MOU Q , et al. Ascorbic acid promotes the reproductive function of porcine immature Sertoli cells through transcriptome reprogramming[J]. Theriogenology, 2020, 158, 309- 320.
doi: 10.1016/j.theriogenology.2020.09.022 |
15 |
ALDAHHAN R A , STANTON P G . Heat stress response of somatic cells in the testis[J]. Mol Cell Endocrinol, 2021, 527, 111216.
doi: 10.1016/j.mce.2021.111216 |
16 |
BELHADJ SLIMEN I , NAJAR T , GHRAM A , et al. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review[J]. J Anim Physiol Anim Nutr (Berl), 2016, 100 (3): 401- 412.
doi: 10.1111/jpn.12379 |
17 |
MALMGREN L , LARSSON K . Semen quality and fertility after heat stress in boars[J]. Acta Vet Scand, 1984, 25 (3): 425- 435.
doi: 10.1186/BF03547257 |
18 |
ZHOU W J , YANG H L , MEI J , et al. Fructose-1, 6-bisphosphate prevents pregnancy loss by inducing decidual COX-2 macrophage differentiation[J]. Sci Adv, 2022, 8 (8): eabj2488.
doi: 10.1126/sciadv.abj2488 |
19 |
ZHAO X , JIANG L , FANG X , et al. Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs[J]. Microbiome, 2022, 10 (1): 115.
doi: 10.1186/s40168-022-01303-1 |
20 |
ZHANG B , CHEN T , CAO M , et al. Gut microbiota dysbiosis induced by decreasing endogenous melatonin mediates the pathogenesis of Alzheimer's disease and obesity[J]. Front Immunol, 2022, 13, 900132.
doi: 10.3389/fimmu.2022.900132 |
21 |
DENG C C , ZHANG J P , HUO Y N , et al. Melatonin alleviates the heat stress-induced impairment of Sertoli cells by reprogramming glucose metabolism[J]. J Pineal Res, 2022, 73 (3): e12819.
doi: 10.1111/jpi.12819 |
22 |
ROSSI G S , ELBASSIOUNY A , JAMISON J , et al. Heat exposure limits pentose phosphate pathway activity in bumblebees[J]. Conserv Physiol, 2024, 12 (1): coae031.
doi: 10.1093/conphys/coae031 |
23 |
LIU F , ZHANG T , HE Y , et al. Integration of transcriptome and proteome analyses reveals the regulation mechanisms of Larimichthys polyactis liver exposed to heat stress[J]. Fish Shellfish Immunol, 2023, 135, 108704.
doi: 10.1016/j.fsi.2023.108704 |
24 |
GONZULEZ R R , LEYVA C L , PEREGRINO U A B , et al. The combination of hypoxia and high temperature affects heat shock, anaerobic metabolism, and pentose phosphate pathway key components responses in the white shrimp (Litopenaeus vannamei)[J]. Cell Stress Chaperones, 2023, 28 (5): 493- 509.
doi: 10.1007/s12192-022-01265-1 |
25 |
LI Y , MA T , LV X , et al. Fluoride stimulates the MAPK pathway to regulate endoplasmic reticulum stress and heat shock proteins to induce duodenal toxicity in chickens[J]. Poult Sci, 2024, 103 (12): 104408.
doi: 10.1016/j.psj.2024.104408 |
26 |
DUTTA G , ALEX R , SINGH A , et al. Functional transcriptome analysis revealed upregulation of MAPK-SMAD signaling pathways in chronic heat stress in crossbred cattle[J]. Int J Biometeorol, 2024, 68 (7): 1371- 1385.
doi: 10.1007/s00484-024-02672-y |
27 | HUANG J , CHAI X , WU Y , et al. β-Hydroxybutyric acid attenuates heat stress-induced neuroinflammation via inhibiting TLR4/p38 MAPK and NF-κB pathways in the hippocampus[J]. FASEB J, 2022, 36 (4): e22264. |
28 |
LIU L , GONG X , ZHANG X , et al. Resveratrol alleviates heat-stress-induced impairment of the jejunal mucosa through TLR4/MAPK signaling pathway in black-boned chicken[J]. Poult Sci, 2024, 103 (1): 103242.
doi: 10.1016/j.psj.2023.103242 |
29 |
ZHANG M , DUNSHEA F R , WARNER R D , et al. Impacts of heat stress on meat quality and strategies for amelioration: a review[J]. Int J Biometeorol, 2020, 64 (9): 1613- 1628.
doi: 10.1007/s00484-020-01929-6 |
30 | ZHAO H , KE H , ZHANG L , et al. Integrated analysis about the effects of heat stress on physiological responses and energy metabolism in Gymnocypris chilianensis[J]. Sci Total Environ, 2022, 806 (Pt 3): 151252. |
31 |
NADERI M , SEYEDABADI M , AMIRI FT , et al. Taurine protects against perfluorooctanoic acid-induced hepatotoxicity via inhibition of oxidative stress, inflammatory, and apoptotic pathways[J]. Toxicol Res (Camb), 2023, 12 (1): 124- 132.
doi: 10.1093/toxres/tfad005 |
32 | 吕秋凤, 董公麟, 曹双, 等. 牛磺酸抗应激作用的研究进展[J]. 中国畜牧杂志, 2014, 50 (21): 78- 81. |
LV Q F , DONG G L , CAO S , et al. Research progress on taurine anti-stress[J]. Chinese Journal of Animal Science, 2014, 50 (21): 78- 81. | |
33 |
QARADAKHI T , GADANEC L K , MCSWEENEY K R , et al. The Anti-inflammatory effect of taurine on cardiovascular disease[J]. Nutrients, 2020, 12 (9): 2847.
doi: 10.3390/nu12092847 |
34 |
SANTULLI G , KANSAKAR U , VARZIDEH F , et al. Functional role of taurine in aging and cardiovascular health: an updated overview[J]. Nutrients, 2023, 15 (19): 4236.
doi: 10.3390/nu15194236 |
35 |
HIGUCHI M , CELINO F T , SHIMIZU-YAMAGUCHI S , et al. Taurine plays an important role in the protection of spermatogonia from oxidative stress[J]. Amino Acids, 2012, 43 (6): 2359- 2369.
doi: 10.1007/s00726-012-1316-9 |
36 |
SINGH P , GOLLAPALLI K , MANGIOLA S , et al. Taurine deficiency as a driver of aging[J]. Science, 2023, 380 (6649): eabn9257.
doi: 10.1126/science.abn9257 |
37 |
CHAWLA D . Taurine and neonatal nutrition[J]. Indian J Pediatr, 2018, 85 (10): 829.
doi: 10.1007/s12098-018-2781-2 |
38 |
CAO T , ZHANG W , WANG Q , et al. Cancer SLC6A6-mediated taurine uptake transactivates immune checkpoint genes and induces exhaustion in CD8+ T cells[J]. Cell, 2024, 187 (9): 2288- 2304.
doi: 10.1016/j.cell.2024.03.011 |
39 | 张金秋, 马子力, 韩立秋, 等. 牛磺酸对不同饲养方式蛋鸡肾脏功能、抗氧化能力和细胞因子水平的影响[J]. 天津农学院学报, 2014, 21 (1): 9- 14. |
ZHANG J Q , MA Z L , HAN L Q , et al. Influence of dietary taurine on renal functions, anti-oxidation activity and cytokines level in laying hens with different rearing patterns[J]. Journal of Tianjin Agricultural University, 2014, 21 (1): 9- 14. | |
40 | 温静, 余哲琪, 田佳迎, 等. γ-氨基丁酸对热应激雏鸡胰腺组织结构、抗氧化能力、消化酶活性及细胞凋亡的影响[J]. 动物营养学报, 2021, 33 (5): 2927- 2938. |
WEN J , YU Z Q , TIAN J Y , et al. Effects of γ-Aminobutyric acid on pancreatic tissue structure, antioxidant capacity, digestive enzyme activity and cell apoptosis of heat-stressed chicks[J]. Chinese Journal of Animal Nutrition, 2021, 33 (5): 2927- 2938. | |
41 |
TANG J , CHEN Z . The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress[J]. J Anim Physiol Anim Nutr (Berl), 2016, 100 (4): 768- 777.
doi: 10.1111/jpn.12385 |
[1] | 姚博元, 杨志文, 孙亚朋, 杨雅楠, 张雅茹, 王欣荣. 基于RNA-Seq对猪心组织新转录本解析及可变剪接和SNP分析[J]. 畜牧兽医学报, 2025, 56(4): 1664-1675. |
[2] | 孟祥旭, 李佳, 任德明, 陈奎蓉, 和艺云, 王立贤, 盛熙晖, 王立刚. 民猪猪繁殖与呼吸综合征恢复力高低组血清代谢组学研究[J]. 畜牧兽医学报, 2025, 56(4): 1689-1699. |
[3] | 张鸿岩, 王善鹏, 曹海梁, 闵令江, 周开锋, 朱振东. 猪精子耐冻性与脂肪酸组成的研究[J]. 畜牧兽医学报, 2025, 56(4): 1755-1767. |
[4] | 李苏陈, 陆婷婷, 陈军光, 缪晖, 毛海光, 韩新燕. 岔路黑猪断奶前后粪便菌群和病毒组变化及其相关性研究[J]. 畜牧兽医学报, 2025, 56(4): 1791-1801. |
[5] | 曹丽艳, 孔祥雨, 袁聪, 段月月, 马国祥, 施磊, 张宇, 万颖, 李想通, 王娅婷, 杜煜, 郑海学, 王琦. 猪急性腹泻综合征冠状病毒核衣壳蛋白新型线性B细胞表位的鉴定[J]. 畜牧兽医学报, 2025, 56(4): 1854-1864. |
[6] | 谭娟娟, 杨贝莹, 武前悦, 花慧颖, 曹华斌, 严珲, 张锦华. 江西地区野猪菌群多样性分析及其携带产气荚膜梭菌的分离鉴定[J]. 畜牧兽医学报, 2025, 56(4): 1876-1886. |
[7] | 侯宛辰, 徐童. 大麻二酚通过BRD4/AMPK/mTOR信号通路拮抗双酚A诱导的猪肠上皮细胞凋亡和自噬[J]. 畜牧兽医学报, 2025, 56(4): 1919-1933. |
[8] | 庞思瑶, 张金龙, 孙雨航. 非细胞毒性浓度AFB1暴露下H1N1型猪流感病毒感染3D4/21细胞的蛋白质组分析[J]. 畜牧兽医学报, 2025, 56(4): 1947-1957. |
[9] | 王吉英, 向书涵, 李志强, 李炻漾, 张磊, 谢青云, 熊祺琰, 邵国青, 冯志新, 于岩飞. 大车前苷抑制猪肺炎支原体诱导的炎性反应的作用初探[J]. 畜牧兽医学报, 2025, 56(4): 1958-1968. |
[10] | 刘爱军, 张传亮, 黄晓兵, 周彩琴. 猪繁殖与呼吸综合征病毒生命周期的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1027-1041. |
[11] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
[12] | 黄雅妮, 唐熹, 李井泉, 魏嘉诚, 吴珍芳, 李新云, 肖石军, 张志燕. 大规模群体解析猪日增重及达百千克体重日龄的潜在因果基因[J]. 畜牧兽医学报, 2025, 56(3): 1100-1109. |
[13] | 吴嘉浩, 吴姿仪, 窦腾飞, 白利瑶, 张永前, 董联合, 李鹏飞, 李新建, 韩雪蕾, 李秀领. 豫农黑猪生长相关性状的拷贝数变异全基因组关联分析研究[J]. 畜牧兽医学报, 2025, 56(3): 1110-1119. |
[14] | 杨宇婷, 陈国梁, 常巧宁, 鲍武, 刘靖超, 姬梦婷, 荣晓音, 郭晓红, 杨阳, 李步高. miR-375-3p靶向Fam229a调控猪前体脂肪细胞分化[J]. 畜牧兽医学报, 2025, 56(3): 1120-1133. |
[15] | 贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||