1 |
GUEVARRA R B , LEE J H , LEE S H , et al. Piglet gut microbial shifts early in life: causes and effects[J]. J Anim Sci Biotechnol, 2019, 10, 1.
doi: 10.1186/s40104-018-0308-3
|
2 |
DING S J , CHENG Y T , AZAD M A K , et al. Developmental changes of immunity and different responses to weaning stress of Chinese indigenous piglets and Duroc piglets during suckling and weaning periods[J]. Int J Mol Sci, 2022, 23 (24): 15781.
doi: 10.3390/ijms232415781
|
3 |
吕玉华, 何孟纤, 徐皆欢, 等. 冷冻精液在岔路黑猪资源保护中的应用[J]. 上海畜牧兽医通讯, 2023 (6): 10-12, 17.
|
|
LÜ Y H , HE M X , XU J H , et al. Application of frozen semen in resource conservation of Chalu black pig[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2023 (6): 10-12, 17.
|
4 |
NEURATH M F , ÜBERLA K , NG S C . Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19[J]. Gut, 2021, 70 (9): 1605- 1608.
doi: 10.1136/gutjnl-2021-324622
|
5 |
TIAMANI K , LUO S Q , SCHULZ S , et al. The role of virome in the gastrointestinal tract and beyond[J]. FEMS Microbiol Rev, 2022, 46 (6): fuac027.
doi: 10.1093/femsre/fuac027
|
6 |
CAO Z R , SUGIMURA N , BURGERMEISTER E , et al. The gut virome: a new microbiome component in health and disease[J]. eBioMedicine, 2022, 81, 104113.
doi: 10.1016/j.ebiom.2022.104113
|
7 |
ROURA E , KOOPMANS S J , LALLÈS J P , et al. Critical review evaluating the pig as a model for human nutritional physiology[J]. Nutr Res Rev, 2016, 29 (1): 60- 90.
doi: 10.1017/S0954422416000020
|
8 |
WANG W L , HU H F , ZIJLSTRA R T , et al. Metagenomic reconstructions of gut microbial metabolism in weanling pigs[J]. Microbiome, 2019, 7 (1): 48.
doi: 10.1186/s40168-019-0662-1
|
9 |
HU J , NIE Y F , CHEN J W , et al. Gradual changes of gut microbiota in weaned miniature piglets[J]. Front Microbiol, 2016, 7, 1727.
|
10 |
LI Y , GUO Y , WEN Z S , et al. Weaning stress perturbs gut microbiome and its metabolic profile in piglets[J]. Sci Rep, 2018, 8 (1): 18068.
doi: 10.1038/s41598-018-33649-8
|
11 |
HAN G G , LEE J Y , JIN G D , et al. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment[J]. Sci Rep, 2018, 8 (1): 6012.
doi: 10.1038/s41598-018-24508-7
|
12 |
WANG C , BAI J Y , CHEN X Y , et al. Gut microbiome-based strategies for host health and disease[J]. Crit Rev Food Sci Nutr, 2024, 64 (19): 6834- 6849.
doi: 10.1080/10408398.2023.2176464
|
13 |
PAJARILLO E A B , CHAE J P , BALOLONG M P , et al. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition[J]. J Gen Appl Microbiol, 2014, 60 (4): 140- 146.
doi: 10.2323/jgam.60.140
|
14 |
TURNBAUGH P J , LEY R E , MAHOWALD M A , et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444 (7122): 1027- 1031.
doi: 10.1038/nature05414
|
15 |
STOJANOV S , BERLEC A , ŠTRUKELJ B . The Influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms, 2020, 8 (11): 1715.
doi: 10.3390/microorganisms8111715
|
16 |
WEI X Y , BOTTOMS K A , STEIN H H , et al. Dietary organic acids modulate gut microbiota and improve growth performance of nursery pigs[J]. Microorganisms, 2021, 9 (1): 110.
doi: 10.3390/microorganisms9010110
|
17 |
GUEVARRA R B , HONG S H , CHO J H , et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition[J]. J Anim Sci Biotechnol, 2018, 9, 54.
doi: 10.1186/s40104-018-0269-6
|
18 |
FENG T , WANG J . Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review[J]. Gut Microbes, 2020, 12 (1): 1801944.
doi: 10.1080/19490976.2020.1801944
|
19 |
CHEN L M , XU Y S , CHEN X Y , et al. The maturing development of gut microbiota in commercial piglets during the weaning transition[J]. Front Microbiol, 2017, 8, 1688.
doi: 10.3389/fmicb.2017.01688
|
20 |
SALADRIGAS-GARCÍA M , D'ANGELO M , KO H L , et al. Understanding host-microbiota interactions in the commercial piglet around weaning[J]. Sci Rep, 2021, 11 (1): 23488.
doi: 10.1038/s41598-021-02754-6
|
21 |
GRESSE R , CHAUCHEYRAS-DURAND F , FLEURY M A , et al. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health[J]. Trends Microbiol, 2017, 25 (10): 851- 873.
doi: 10.1016/j.tim.2017.05.004
|
22 |
TAO S Y , ZOU H C , LI J J , et al. Landscapes of enteric virome signatures in early-weaned piglets[J]. Microbiol Spectr, 2022, 10 (4): e0169822.
doi: 10.1128/spectrum.01698-22
|
23 |
CHEN Q , ZHANG X J , SHI W L , et al. Longitudinal investigation of enteric virome signatures from parental-generation to offspring pigs[J]. Microbiol Spectr, 2023, 11 (3): e0002323.
doi: 10.1128/spectrum.00023-23
|
24 |
JANSEN D , MATTHIJNSSENS J . The emerging role of the gut virome in health and inflammatory bowel disease: challenges, covariates and a viral imbalance[J]. Viruses, 2023, 15 (1): 173.
doi: 10.3390/v15010173
|
25 |
BAO S W , WANG H , LI W , et al. Viral metagenomics of the gut virome of diarrheal children with Rotavirus A infection[J]. Gut Microbes, 2023, 15 (1): 2234653.
doi: 10.1080/19490976.2023.2234653
|
26 |
TUN H M , PENG Y , MASSIMINO L , et al. Gut virome in inflammatory bowel disease and beyond[J]. Gut, 2024, 73 (2): 350- 360.
doi: 10.1136/gutjnl-2023-330001
|
27 |
NORMAN J M , HANDLEY S A , BALDRIDGE M T , et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease[J]. Cell, 2015, 160 (3): 447- 460.
doi: 10.1016/j.cell.2015.01.002
|
28 |
ZUO T , LU X J , ZHANG Y , et al. Gut mucosal virome alterations in ulcerative colitis[J]. Gut, 2019, 68 (7): 1169- 1179.
doi: 10.1136/gutjnl-2018-318131
|
29 |
GOGOKHIA L , BUHRKE K , BELL R , et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis[J]. Cell Host Microbe, 2019, 25 (2): 285- 299.
doi: 10.1016/j.chom.2019.01.008
|
30 |
SPINDELBOECK W , SCHULZ E , UHL B , et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease[J]. Haematologica, 2017, 102 (5): e210- e213.
doi: 10.3324/haematol.2016.154351
|
31 |
ZHANG F , ZUO T , YEOH Y K , et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease[J]. Nat Commun, 2021, 12 (1): 65.
doi: 10.1038/s41467-020-20240-x
|
32 |
ZUO T , WONG S H , LAM K , et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome[J]. Gut, 2018, 67 (4): 634- 643.
|
33 |
LAM S , BAI X W , SHKOPOROV A N , et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation[J]. Lancet Gastroenterol Hepatol, 2022, 7 (5): 472- 484.
doi: 10.1016/S2468-1253(21)00303-4
|
34 |
MIRZAEI M K , MAURICE C F . Ménage à trois in the human gut: interactions between host, bacteria and phages[J]. Nat Rev Microbiol, 2017, 15 (7): 397- 408.
doi: 10.1038/nrmicro.2017.30
|
35 |
冀亚路. 腹泻断奶仔猪肠道噬菌体组特征及其相关耐药和裂解酶基因研究[D]. 长春: 吉林大学, 2023.
|
|
JI Y L. Study on the characteristics of intestinal phageome and its related drug resistance and lysin genes in weaned piglets with diarrhea[D]. Changchun: Jilin University, 2023. (in Chinese)
|
36 |
CANI P D , DEPOMMIER C , DERRIEN M , et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms[J]. Nat Rev Gastroenterol Hepatol, 2022, 19 (10): 625- 637.
doi: 10.1038/s41575-022-00631-9
|