畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 591-602.doi: 10.11843/j.issn.0366-6964.2025.02.011
王元清(), 王泽昭, 朱波, 陈燕, 徐凌洋, 张路培, 高会江, 李超, 李俊雅*(
), 高雪*(
)
收稿日期:
2024-08-09
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
李俊雅,高雪
E-mail:wangyuanqing811@126.com;lijunya@caas.cn;gaoxue@caas.cn
作者简介:
王元清(2000-),男,山东枣庄人,硕士生,主要从事牛基因组选择及选配研究,E-mail: wangyuanqing811@126.com
基金资助:
WANG Yuanqing(), WANG Zezhao, ZHU Bo, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Huijiang, LI Chao, LI Junya*(
), GAO Xue*(
)
Received:
2024-08-09
Online:
2025-02-23
Published:
2025-02-26
Contact:
LI Junya, GAO Xue
E-mail:wangyuanqing811@126.com;lijunya@caas.cn;gaoxue@caas.cn
摘要:
旨在基于Illumina BovineHD 770K与Cattle 110K芯片在华西牛中的实际应用情况,系统比较在不同标记密度下基因组选择预测准确性的差异,探索两款芯片在华西牛遗传评估中结合使用方法。本试验以课题组前期构建的华西牛基因组选择参考群体为研究对象,利用重测序数据将3 948头华西牛770K芯片填充至790K后,分别取90K(两款芯片交集)、110K、770K、790K(两款芯片并集)4种标记密度,对华西牛遗传评估所涉及的5个性状(断奶重、育肥期平均日增重、产犊难易度、胴体重、屠宰率)进行遗传力估计,并通过GBLUP模型利用五折交叉验证对基因组评估准确性进行比较,筛选并确定华西牛遗传评估中最适标记密度。结果显示:1)4种标记密度下,估计的华西牛5个性状遗传力差异不显著,断奶重和平均日增重的遗传力为0.47~0.50,属于高遗传力;胴体重为0.37~0.39,属于中等遗传力;产犊难易度和屠宰率性状为0.14~0.21,属于中低遗传力。2)在GBLUP评估模型中,Cattle 110K在各个性状上的预测准确性均表现良好,并较Illumina BovineHD 770K芯片有显著提升(P < 0.05),其中胴体重、产犊难易度和屠宰率3个性状提升较为明显,分别提升了14.9%、13.8%和8.4%;断奶重和育肥期平均日增重分别提升2.8%和4.5%。3)各性状预测准确性随着遗传力的升高而增加,不同标记密度的回归系数分别为0.439 2(90K)、0.374 1(110K)、0.413 6(770K)、0.459 3(790K)。因此,在华西牛实际遗传评估中,可直接使用Cattle 110K芯片进行评估,在获得较好评估准确性的同时降低成本。
中图分类号:
王元清, 王泽昭, 朱波, 陈燕, 徐凌洋, 张路培, 高会江, 李超, 李俊雅, 高雪. 不同芯片密度对华西牛重要经济性状基因组评估准确性的影响[J]. 畜牧兽医学报, 2025, 56(2): 591-602.
WANG Yuanqing, WANG Zezhao, ZHU Bo, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Huijiang, LI Chao, LI Junya, GAO Xue. Comparison of Prediction Accuracy of Genomic Selection for Economically Important Traits in Huaxi Cattle Based on Different Chip Densities[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 591-602.
表 3
华西牛重要经济性状的表型统计量"
性状 Trait | 个体数 Count | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Standard deviation |
断奶重/kg Weaning weight | 1 294 | 40.00 | 395.00 | 203.75 | 53.13 |
育肥期平均日增重/kg Daily weight gain during fattening period | 1 324 | 0.37 | 2.41 | 0.96 | 0.21 |
产犊难易度 Calving ease | 944 | 1.00 | 4.00 | 1.11 | 0.39 |
胴体重/kg Carcass weight | 1 694 | 162.60 | 482.00 | 297.56 | 64.03 |
屠宰率/% Dressing percentage | 1 687 | 41.00 | 69.51 | 53.86 | 4.21 |
表 4
华西牛重要经济性状的方差组分及遗传力"
性状 Trait | 芯片密度 Chip density | 表型方差 Phenotype variance | 残差方差 Residual variance | 加性方差 Additive variance | 遗传力 Heritability |
断奶重 Weaning weight | 90K | 2 090.034 0 | 1 039.189 0 | 1 050.845 0 | 0.502 8 |
110K | 2 091.601 0 | 1 062.287 0 | 1 029.314 0 | 0.492 1 | |
770K | 2 092.303 0 | 1 040.916 0 | 1 051.387 0 | 0.502 5 | |
790K | 2 091.518 0 | 1 043.308 0 | 1 048.210 0 | 0.501 2 | |
育肥期平均日增重 Daily weight gain during fattening period | 90K | 0.029 6 | 0.015 6 | 0.014 0 | 0.473 3 |
110K | 0.029 5 | 0.015 2 | 0.014 3 | 0.485 7 | |
770K | 0.029 5 | 0.015 3 | 0.014 2 | 0.480 6 | |
790K | 0.029 5 | 0.015 0 | 0.014 5 | 0.490 5 | |
产犊难易度 Calving ease | 90K | 0.146 4 | 0.124 4 | 0.022 0 | 0.150 0 |
110K | 0.146 2 | 0.125 5 | 0.020 8 | 0.141 8 | |
770K | 0.146 5 | 0.122 9 | 0.023 6 | 0.160 8 | |
790K | 0.146 5 | 0.123 1 | 0.023 4 | 0.159 6 | |
胴体重 Carcass weight | 90K | 1 018.409 2 | 636.122 2 | 382.287 0 | 0.375 4 |
110K | 1 012.938 2 | 622.160 6 | 390.777 6 | 0.385 8 | |
770K | 1 016.092 7 | 644.958 8 | 371.133 9 | 0.365 3 | |
790K | 1 014.752 5 | 632.317 4 | 382.435 1 | 0.376 9 | |
屠宰率 Dressing percentage | 90K | 0.000 6 | 0.000 5 | 0.000 1 | 0.195 3 |
110K | 0.000 6 | 0.000 5 | 0.000 1 | 0.206 9 | |
770K | 0.000 6 | 0.000 5 | 0.000 1 | 0.205 3 | |
790K | 0.000 6 | 0.000 5 | 0.000 1 | 0.208 5 |
表 5
华西牛重要经济性状基因组选择的无偏性结果汇总"
芯片密度 Chip density | 无偏性 Unbiasedness | ||||
断奶重 Weaning weight | 平均日增重 Daily weight gain during fattening period | 产犊难易度 Calving ease | 屠宰率 Dressing percentage | 胴体重 Carcass weight | |
90K | 0.946 1 ±0.063 3 | 0.988 7 ±0.090 5 | 0.870 1 ±0.141 2 | 1.010 5 ±0.084 4 | 0.907 9 ±0.064 7 |
110K | 0.851 0 ±0.041 3 | 0.994 2 ±0.029 2 | 0.974 5 ±0.091 3 | 0.951 0 ±0.089 8 | 0.934 6 ±0.075 2 |
770K | 0.877 3 ±0.122 6 | 0.986 7 ±0.132 7 | 1.008 8 ±0.132 6 | 0.981 0 ±0.099 1 | 0.995 7 ±0.036 2 |
790K | 0.899 5 ±0.087 4 | 1.038 6 ±0.118 6 | 0.871 8 ±0.126 9 | 1.012 4 ±0.085 3 | 0.915 7 ±0.055 6 |
1 |
MEUWISSEN T H E , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
2 | 汪聪勇, 朱波, 李俊雅. 中国肉牛种业发展现状、存在问题及建议[J]. 中国牛业科学, 2020, 46 (2): 52- 54. |
WANG C Y , ZHU B , LI J Y . Development status, problems and suggestions of cattle seed industry in China[J]. China Cattle Science, 2020, 46 (2): 52- 54. | |
3 | 李姣, 秦雅婷. 我国肉牛种业概况[J]. 中国畜牧业, 2020, (7): 34- 35. |
LI J , QIN Y T . General situation of beef cattle seed industry in China[J]. China Animal Industry, 2020, (7): 34- 35. | |
4 |
GUINAN F L , WIGGANS G R , NORMAN H D , et al. Changes in genetic trends in US dairy cattle since the implementation of genomic selection[J]. J Dairy Sci, 2023, 106 (2): 1110- 1129.
doi: 10.3168/jds.2022-22205 |
5 |
SMITH T P L , BICKHART D M , BOICHARD D , et al. The Bovine Pangenome Consortium: democratizing production and accessibility of genome assemblies for global cattle breeds and other bovine species[J]. Genome Biol, 2023, 24 (1): 139.
doi: 10.1186/s13059-023-02975-0 |
6 |
WANG H F , LI C L , LI J Y , et al. Genomic selection for weaning weight in alpine merino sheep based on GWAS prior marker information[J]. Animals, 2024, 14 (13): 1904.
doi: 10.3390/ani14131904 |
7 |
HENDERSON C R . Best linear unbiased estimation and prediction under a selection model[J]. Biometrics, 1975, 31 (2): 423- 447.
doi: 10.2307/2529430 |
8 |
SOLBERG T R , SONESSON A K , WOOLLIAMS J A , et al. Genomic selection using different marker types and densities[J]. J Anim Sci, 2008, 86 (10): 2447- 2454.
doi: 10.2527/jas.2007-0010 |
9 |
HEFFNER E L , JANNINK J L , IWATA H , et al. Genomic selection accuracy for grain quality traits in biparental wheat populations[J]. Crop Sci, 2011, 51 (6): 2597- 2606.
doi: 10.2135/cropsci2011.05.0253 |
10 |
MATUKUMALLI L K , LAWLEY C T , SCHNABEL R D , et al. Development and characterization of a high density SNP genotyping assay for cattle[J]. PLoS One, 2009, 4 (4): e5350.
doi: 10.1371/journal.pone.0005350 |
11 |
ZHAO F P , ZHANG P F , WANG X Q , et al. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement[J]. J Anim Sci Biotechnol, 2023, 14 (1): 87.
doi: 10.1186/s40104-023-00872-x |
12 |
CHEN Y , GUO Y W , GE F , et al. Developing a liquid capture chip to accelerate the genetic progress of cattle[J]. Anim Res One Health, 2024, 2 (2): 204- 216.
doi: 10.1002/aro2.58 |
13 | HAYES B J, MACLEOD L M, DAETWYLER H D, et al. Genomic prediction from whole genome sequence in livestock: the 1000 bull genomes project[C]//Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. Vancouver: American Society of Animal Science, 2014. |
14 |
BROWNING B L , ZHOU Y , BROWNING S R . A one-penny imputed genome from next-generation reference panels[J]. Am J Hum Genet, 2018, 103 (3): 338- 348.
doi: 10.1016/j.ajhg.2018.07.015 |
15 |
BROWNING B L , TIAN X W , ZHOU Y , et al. Fast two-stage phasing of large-scale sequence data[J]. Am J Hum Genet, 2021, 108 (10): 1880- 1890.
doi: 10.1016/j.ajhg.2021.08.005 |
16 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
17 | GILMOUR A R, GOGEL B J, CULLIS B R, et al. ASReml user guide release 4.1 structural specification[R]. Hemel Hempstead: VSN International Ltd., 2014: 5. |
18 |
PRYCE J E , ARIAS J , BOWMAN P J , et al. Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625, 000 single nucleotide polymorphism markers[J]. J Dairy Sci, 2012, 95 (4): 2108- 2119.
doi: 10.3168/jds.2011-4628 |
19 |
ZHANG M H , LUO H P , XU L , et al. Genomic selection for milk production traits in Xinjiang Brown cattle[J]. Animals, 2022, 12 (2): 136.
doi: 10.3390/ani12020136 |
20 |
YIN C , ZHOU P , WANG Y W , et al. Using genomic selection to improve the accuracy of genomic prediction for multi-populations in pigs[J]. Animal, 2024, 18 (2): 101062.
doi: 10.1016/j.animal.2023.101062 |
21 |
YAN X C , ZHANG T , LIU L C , et al. Accuracy of genomic selection for important economic traits of cashmere and meat goats assessed by simulation study[J]. Front Vet Sci, 2022, 9, 770539.
doi: 10.3389/fvets.2022.770539 |
22 |
牛红, 宝金山, 吴洋, 等. 中国西门塔尔牛肉用群体重要经济性状遗传参数估计[J]. 畜牧兽医学报, 2016, 47 (9): 1817- 1823.
doi: 10.11843/j.issn.0366-6964.2016.09.009 |
NIU H , BAO J S , WU Y , et al. Estimation of genetic parameters for economic important traits in chinese simmental beef cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (9): 1817- 1823.
doi: 10.11843/j.issn.0366-6964.2016.09.009 |
|
23 |
PRITCHARD T C , WALL E , COFFEY M P . Genetic parameters for carcase measurements and age at slaughter in commercial cattle[J]. Animal, 2021, 15 (2): 100090.
doi: 10.1016/j.animal.2020.100090 |
24 |
SRIVASTAVA S , LOPEZ B I , DE LAS HERAS-SALDANA S , et al. Estimation of genetic parameters by single-trait and multi-trait models for carcass traits in Hanwoo cattle[J]. Animals, 2019, 9 (12): 1061.
doi: 10.3390/ani9121061 |
25 |
WINDER J A , BRINKS J S , BOURDON R M , et al. Genetic analysis of absolute growth measurements, relative growth rate and restricted selection indices in red Angus cattle[J]. J Anim Sci, 1990, 68 (2): 330- 336.
doi: 10.2527/1990.682330x |
26 |
BAKER R L , MORRIS C A , JOHNSON D L , et al. Results of selection for yearling or 18-month weight in angus and Hereford cattle[J]. Livest Prod Sci, 1991, 29 (4): 277- 296.
doi: 10.1016/0301-6226(91)90104-X |
27 |
MUKAI F , OYAMA K , KOHNO S . Genetic relationships between performance test traits and field carcass traits in Japanese Black cattle[J]. Livest Prod Sci, 1995, 44 (3): 199- 205.
doi: 10.1016/0301-6226(95)00069-0 |
28 |
NESENGANI L T , NEPHAWE K A , SEBEI J , et al. Genetic relationship between weaning weight and milk yield in Nguni cattle[J]. Animal, 2018, 12 (2): 199- 204.
doi: 10.1017/S1751731117001483 |
29 | 周佩诺. 中国肉用西门塔尔牛经济性状相关SNP优化筛选研究[D]. 北京: 中国农业科学院, 2021. |
ZHOU P N. Optimization selecting related SNPs for economic traits of Chinese simmental beef cattle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) | |
30 |
SAATCHI M , SCHNABEL R D , ROLF M M , et al. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle[J]. Genet Sel Evol, 2012, 44 (1): 38.
doi: 10.1186/1297-9686-44-38 |
31 |
BOLORMAA S , HAILE-MARIAM M , MARETT L C , et al. Use of dry-matter intake recorded at multiple time periods during lactation increases the accuracy of genomic prediction for dry-matter intake and residual feed intake in dairy cattle[J]. Anim Prod Sci, 2023, 63 (11): 1113- 1125.
doi: 10.1071/AN23022 |
32 |
MORRIS C A , CULLEN N G , MCCALL D G . Genetic and phenotypic relationships among carcass measurements in beef cattle[J]. N Z J Agric Res, 1999, 42 (4): 415- 421.
doi: 10.1080/00288233.1999.9513390 |
33 |
李柯安宁, 杜丽丽, 安炳星, 等. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54 (9): 3664- 3676.
doi: 10.11843/j.issn.0366-6964.2023.09.008 |
LI K A N , DU L L , AN B X , et al. Genetic parameter estimation and genome-wide association study for carcass traits and primal cuts weight traits in Huaxi cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3664- 3676.
doi: 10.11843/j.issn.0366-6964.2023.09.008 |
|
34 |
朱波, 李姣, 汪聪勇, 等. 我国肉用西门塔尔牛群体生长发育性状遗传参数估计及其遗传进展[J]. 畜牧兽医学报, 2020, 51 (8): 1833- 1844.
doi: 10.11843/j.issn.0366-6964.2020.08.007 |
ZHU B , LI J , WANG C Y , et al. Genetic parameter and genetic gain estimation for growth and development traits in Chinese Simmental beef cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (8): 1833- 1844.
doi: 10.11843/j.issn.0366-6964.2020.08.007 |
|
35 |
GUO P , ZHU B , NIU H , et al. Fast genomic prediction of breeding values using parallel Markov chain Monte Carlo with convergence diagnosis[J]. BMC Bioinformatics, 2018, 19 (1): 3.
doi: 10.1186/s12859-017-2003-3 |
36 |
HAQUE A , IQBAL A , BAE H , et al. Assessment of genomic breeding values and their accuracies for carcass traits in Jeju Black cattle using whole-genome SNP chip panels[J]. J Anim Breed Genet, 2023, 140 (5): 519- 531.
doi: 10.1111/jbg.12776 |
37 |
LI W J , LI W Q , SONG Z C , et al. Marker density and models to improve the accuracy of genomic selection for growth and slaughter traits in meat rabbits[J]. Genes, 2024, 15 (4): 454.
doi: 10.3390/genes15040454 |
38 |
KIM E H , KANG H C , SUN D W , et al. Estimation of breeding value and accuracy using pedigree and genotype of Hanwoo cows (Korean cattle)[J]. J Anim Breed Genet, 2022, 139 (3): 281- 291.
doi: 10.1111/jbg.12661 |
39 |
SCHAEFFER L R . Strategy for applying genome-wide selection in dairy cattle[J]. J Anim Breed Genet, 2006, 123 (4): 218- 223.
doi: 10.1111/j.1439-0388.2006.00595.x |
40 |
WANG X , SHI S L , WANG G J , et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 60.
doi: 10.1186/s40104-022-00708-0 |
41 |
SAATCHI M , MCCLURE M C , MCKAY S D , et al. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation[J]. Genet Sel Evol, 2011, 43, 40.
doi: 10.1186/1297-9686-43-40 |
42 |
BOLORMAA S , PRYCE J E , KEMPER K , et al. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle[J]. J Anim Sci, 2013, 91 (7): 3088- 3104.
doi: 10.2527/jas.2012-5827 |
43 |
ONOGI A , OGINO A , KOMATSU T , et al. Genomic prediction in Japanese Black cattle: application of a single-step approach to beef cattle[J]. J Anim Sci, 2014, 92 (5): 1931- 1938.
doi: 10.2527/jas.2014-7168 |
44 |
SPINDEL J , BEGUM H , AKDEMIR D , et al. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines[J]. PLoS Genet, 2015, 11 (2): e1004982.
doi: 10.1371/journal.pgen.1004982 |
45 |
ZHU S H , GUO T T , YUAN C , et al. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep[J]. G3 (Bethesda), 2021, 11 (11): jkab206.
doi: 10.1093/g3journal/jkab206 |
46 |
ERBE M , HAYES B J , MATUKUMALLI L K , et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels[J]. J Dairy Sci, 2012, 95 (7): 4114- 4129.
doi: 10.3168/jds.2011-5019 |
47 |
HEIDARITABAR M , CALUS M P L , MEGENS H J , et al. Accuracy of genomic prediction using imputed whole-genome sequence data in white layers[J]. J Anim Breed Genet, 2016, 133 (3): 167- 179.
doi: 10.1111/jbg.12199 |
48 |
WERNER C R , VOSS-FELS K P , MILLER C N , et al. Effective genomic selection in a narrow-genepool crop with low-density markers: Asian rapeseed as an example[J]. Plant Genome, 2018, 11 (2): 170084.
doi: 10.3835/plantgenome2017.09.0084 |
49 | GUTIERREZ A P , MATIKA O , BEAN T P , et al. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): potential of low-density marker panels for breeding value prediction[J]. Front Genet, 2018, 9, 391. |
50 | 王珏, 刘成琨, 刘德武, 等. 基于不同密度SNP芯片在杜洛克公猪中的全基因组选择效果分析[J]. 中国畜牧杂志, 2019, 55 (12): 75- 79. |
WANG J , LIU C K , LIU D W , et al. Analysis of genomic selection based on SNP data of various density chips in duroc male pig population[J]. Chinese Journal of Animal Science, 2019, 55 (12): 75- 79. | |
51 | VANRADEN P M , TOOKER M E , O'CONNELL J R , et al. Selecting sequence variants to improve genomic predictions for dairy cattle[J]. Genet Sel Evol, 2017, 49 (1): 32. |
52 |
彭潇, 尹立林, 梅全顺, 等. 猪主要经济性状的基因组选择研究[J]. 畜牧兽医学报, 2019, 50 (2): 439- 445.
doi: 10.11843/j.issn.0366-6964.2019.02.023 |
PENG X , YIN L L , MEI Q S , et al. A study of genome selection based on the porcine major economic traits[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 439- 445.
doi: 10.11843/j.issn.0366-6964.2019.02.023 |
|
53 | GE F , JIA C J , BAO P J , et al. Accuracies of genomic prediction for growth traits at weaning and yearling ages in yak[J]. Animals (Basel), 2020, 10 (10): 1793. |
54 | JIA Y , JANNINK J L . Multiple-trait genomic selection methods increase genetic value prediction accuracy[J]. Genetics, 2012, 192 (4): 1513- 1522. |
55 |
李浩东, 闵祥玉, 周雅, 等. 基于GBLUP等模型对梅花鹿(Cervus Nippon)生长相关性状基因组选择的预测准确性比较[J]. 畜牧兽医学报, 2023, 54 (2): 608- 616.
doi: 10.11843/j.issn.0366-6964.2023.02.018 |
LI H D , MIN X Y , ZHOU Y , et al. Comparison of prediction accuracy of genomic selection for growth-related traits in Sika Deer (Cervus Nippon) based on GBLUP and other models[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 608- 616.
doi: 10.11843/j.issn.0366-6964.2023.02.018 |
[1] | 阳文攀, 刘相杰, 罗冬香, 陈梦会, 谢瑛, 方跃鑫, 林婷燕, 李爱民, 李文静, 邓政, 丁能水. 基于芯片数据的长白猪繁殖性状基因组选择研究[J]. 畜牧兽医学报, 2025, 56(1): 213-221. |
[2] | 牛一凡, 李崇阳, 张培培, 张航, 冯肖艺, 余洲, 曹建华, 杜卫华, 万鹏程, 马友记, 赵学明. 牛活检胚胎细胞微量扩增体系效果评估[J]. 畜牧兽医学报, 2025, 56(1): 246-258. |
[3] | 贾宏霞, 刘在霞, 周乐, 鲍艳春, 霍晨曦, 左鹏鹏, 谷明娟, 娜日苏, 张文广. 基因组选择在肉牛中的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3757-3768. |
[4] | 王进部, 李佳, 任德明, 王立贤, 王立刚. 机器学习在畜禽基因组选择中的应用进展[J]. 畜牧兽医学报, 2024, 55(7): 2775-2785. |
[5] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
[6] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[7] | 吴华煊, 杜志强. 基因型特征提取方法影响基因组选择预测准确性的研究[J]. 畜牧兽医学报, 2024, 55(6): 2431-2440. |
[8] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[9] | 祁军英, 裴全帮, 张文魁, 徐腾, 左明星, 韩步鹰, 李雪, 刘德会, 王松, 周佰成, 赵凯, 田得红. 全基因组选择信号鉴定高原型藏羊毛用性状候选基因及关联分析[J]. 畜牧兽医学报, 2024, 55(12): 5511-5526. |
[10] | 严晓春, 习海娇, 李金泉, 王志英, 苏蕊. 内蒙古绒山羊绒毛性状基因组育种值估计准确性研究[J]. 畜牧兽医学报, 2024, 55(1): 120-128. |
[11] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[12] | 王万年, 陈思佳, 郜金荣, 温中豪, 袁梦娇, 张洪志, 庞志旭, 乔利英, 刘文忠. 基于多层感知机的绵羊限性性状基因组选择模拟研究[J]. 畜牧兽医学报, 2023, 54(7): 2824-2835. |
[13] | 李浩东, 闵祥玉, 周雅, 张禾垟, 郑军军, 刘琳玲, 王平, 王艳梅, 杨福合, 王桂武. 基于GBLUP等模型对梅花鹿(Cervus Nippon)生长相关性状基因组选择的预测准确性比较[J]. 畜牧兽医学报, 2023, 54(2): 608-616. |
[14] | 杨凯, 卢倬达, 何健, 张瑞琪, 王素青, 李克标, 赵云翔, 朱晓萍, 郭金彪. 商品猪群体效应对纯种猪胴体性状基因组选择准确性的影响[J]. 畜牧兽医学报, 2023, 54(12): 4943-4951. |
[15] | 牛一凡, 杨柏高, 张培培, 张航, 冯肖艺, 曹建华, 余洲, 郝海生, 杜卫华, 邹惠影, 朱化彬, 马友记, 赵学明. 牛胚胎基因组选择研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4449-4457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||