1 |
ALVES-FERNANDES D K , JASIULIONIS M G . The role of SIRT1 on DNA damage response and epigenetic alterations in cancer[J]. Int J Mol Sci, 2019, 20 (13): 3153.
doi: 10.3390/ijms20133153
|
2 |
IMAI S I , ARMSTRONG C M , KAEBERLEIN M , et al. Transcriptional silencing and longevity protein sir2 is an NAD-dependent histone deacetylase[J]. Nature, 2000, 403 (6771): 795- 800.
doi: 10.1038/35001622
|
3 |
HAJJI N , WALLENBORG K , VLACHOS P , et al. Opposing effects of hMOF and SIRT1 on H4K16 acetylation and the sensitivity to the topoisomerase II inhibitor etoposide[J]. Oncogene, 2010, 29 (15): 2192- 2204.
doi: 10.1038/onc.2009.505
|
4 |
VAQUERO A , SCHER M , LEE D , et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell, 2004, 16 (1): 93- 105.
doi: 10.1016/j.molcel.2004.08.031
|
5 |
KARBASFOROOSHAN H , ROOHBAKHSH A , KARIMI G . SIRT1 and microRNAs: the role in breast, lung and prostate cancers[J]. Exp Cell Res, 2018, 367 (1): 1- 6.
doi: 10.1016/j.yexcr.2018.03.023
|
6 |
CHEN H , LIN X P , YI X H , et al. SIRT1-mediated p53 deacetylation inhibits ferroptosis and alleviates heat stress-induced lung epithelial cells injury[J]. Int J Hyperthermia, 2022, 39 (1): 977- 986.
doi: 10.1080/02656736.2022.2094476
|
7 |
DILMAC S , KUSCU N , CANER A , et al. SIRT1/FOXO signaling pathway in breast cancer progression and metastasis[J]. Int J Mol Sci, 2022, 23 (18): 10227.
doi: 10.3390/ijms231810227
|
8 |
HAO Y J , REN Z N , YU L , et al. p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis[J]. Aging Cell, 2022, 21 (8): e13677.
doi: 10.1111/acel.13677
|
9 |
HAN X , DING C , SANG X N , et al. Targeting Sirtuin1 to treat aging-related tissue fibrosis: From prevention to therapy[J]. Pharmacol Ther, 2022, 229, 107983.
doi: 10.1016/j.pharmthera.2021.107983
|
10 |
MA J Y , YANG H , LIU L , et al. Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway[J]. Theriogenology, 2021, 173, 83- 92.
doi: 10.1016/j.theriogenology.2021.07.011
|
11 |
XU G Q , DONG Y Y Y , WANG Z , et al. Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J]. Int J Mol Sci, 2023, 24 (16): 12854.
doi: 10.3390/ijms241612854
|
12 |
ZHANG W J , HUANG Q B , ZENG Z H , et al. Sirt1 inhibits oxidative stress in vascular endothelial cells[J]. Oxid Med Cell Longev, 2017, 2017, 7543973.
doi: 10.1155/2017/7543973
|
13 |
WANG L , XU C Y , JOHANSEN T , et al. SIRT1- a new mammalian substrate of nuclear autophagy[J]. Autophagy, 2021, 17 (2): 593- 595.
doi: 10.1080/15548627.2020.1860541
|
14 |
LU Z Y , WANG H Z , ISHFAQ M , et al. Quercetin and AMPK: a dynamic duo in alleviating MG-induced inflammation via the AMPK/SIRT1/NF-κB pathway[J]. Molecules, 2023, 28 (21): 7388.
doi: 10.3390/molecules28217388
|
15 |
MA Z X , XU H , XIANG W , et al. Deacetylation of FOXO4 by Sirt1 stabilizes chondrocyte extracellular matrix upon activating SOX9[J]. Eur Rev Med Pharmacol Sci, 2021, 25 (2): 626- 635.
|
16 |
王轶敏, 代阳, 刘新峰, 等. 牛骨骼肌卫星细胞的分离鉴定和诱导分化[J]. 中国畜牧兽医, 2014, 41 (7): 142- 147.
|
|
WANG Y M , DAI Y , LIU X F , et al. Isolation, identification and induced differentiation of bovine skeletal muscle satellite cells[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41 (7): 142- 147.
|
17 |
DUMONT N A , BENTZINGER C F , SINCENNES M C , et al. Satellite cells and skeletal muscle regeneration[J]. Compr Physiol, 2015, 5 (3): 1027- 1059.
|
18 |
SOUSA-VICTOR P , GARCÍA-PRAT L , MUÑOZ-CÁNOVES P . Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23 (3): 204- 226.
doi: 10.1038/s41580-021-00421-2
|
19 |
刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55 (4): 1592- 1604.
doi: 10.11843/j.issn.0366-6964.2024.04.022
|
|
LIU Y , LI X Y , ZHANG W Y . Molecular mechanism of MMP14 regulating skeletal muscle satellite cell differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1592- 1604.
doi: 10.11843/j.issn.0366-6964.2024.04.022
|
20 |
SCHIAFFINO S , DYAR K A , CICILIOT S , et al. Mechanisms regulating skeletal muscle growth and atrophy[J]. FEBS J, 2013, 280 (17): 4294- 4314.
doi: 10.1111/febs.12253
|
21 |
RELAIX F , BENCZE M , BOROK M J , et al. Perspectives on skeletal muscle stem cells[J]. Nat Commun, 2021, 12 (1): 692.
doi: 10.1038/s41467-020-20760-6
|
22 |
WANG S C , ZHAO X , LIU Q Q , et al. Selenoprotein K protects skeletal muscle from damage and is required for satellite cells-mediated myogenic differentiation[J]. Redox Biol, 2022, 50, 102255.
doi: 10.1016/j.redox.2022.102255
|
23 |
王子岩, 王亚慧, 吴天弋, 等. INTS11通过介导CDK2和CYCLIND1的转录促进牛成肌细胞增殖[J]. 畜牧兽医学报, 2024, 55 (7): 2927- 2939.
doi: 10.11843/j.issn.0366-6964.2024.07.013
|
|
WANG Z Y , WANG Y H , WU T Y , et al. INTS11 promotes the proliferation of bovine myoblasts by mediating the transcription of CDK2 and CYCLIND1[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2927- 2939.
doi: 10.11843/j.issn.0366-6964.2024.07.013
|
24 |
RYALL J G , DELL'ORSO S , DERFOUL A , et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells[J]. Cell Stem Cell, 2015, 16 (2): 171- 183.
doi: 10.1016/j.stem.2014.12.004
|
25 |
AMAT R , PLANAVILA A , CHEN S L , et al. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ Co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD[J]. J Biol Chem, 2009, 284 (33): 21872- 21880.
doi: 10.1074/jbc.M109.022749
|
26 |
CANTÓ C , JIANG L Q , DESHMUKH A S , et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle[J]. Cell Metab, 2010, 11 (3): 213- 219.
doi: 10.1016/j.cmet.2010.02.006
|
27 |
GURD B J . Deacetylation of PGC-1α by SIRT1:importance for skeletal muscle function and exercise-induced mitochondrial biogenesis[J]. Appl Physiol Nutr Metab, 2011, 36 (5): 589- 597.
doi: 10.1139/h11-070
|
28 |
MCBURNEY M W , YANG X F , JARDINE K , et al. The mammalian SIR2α protein has a role in embryogenesis and gametogenesis[J]. Mol Cell Biol, 2003, 23 (1): 38- 54.
doi: 10.1128/MCB.23.1.38-54.2003
|
29 |
JIN X X , SUN X L , MA X , et al. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1[J]. Cell Mol Life Sci, 2024, 81 (1): 204.
doi: 10.1007/s00018-023-05043-9
|
30 |
ZAINABADI K , LIU C J , CALDWELL A L M , et al. SIRT1 is a positive regulator of in vivo bone mass and a therapeutic target for osteoporosis[J]. PLoS One, 2017, 12 (9): e0185236.
doi: 10.1371/journal.pone.0185236
|
31 |
MOON M H , JEONG J K , LEE Y J , et al. SIRT1, a class III histone deacetylase, regulates TNF-α-induced inflammation in human chondrocytes[J]. Osteoarthritis Cartilage, 2013, 21 (3): 470- 480.
doi: 10.1016/j.joca.2012.11.017
|
32 |
BUHRMANN C , BUSCH F , SHAYAN P , et al. Sirtuin-1 (SIRT1) is required for promoting chondrogenic differentiation of mesenchymal stem cells[J]. J Biol Chem, 2014, 289 (32): 22048- 22062.
doi: 10.1074/jbc.M114.568790
|