1 |
JUNG K , SAIF L J , WANG Q H . Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control[J]. Virus Res, 2020, 286, 198045.
doi: 10.1016/j.virusres.2020.198045
|
2 |
LI M , PAN Y Y , XI Y , et al. Insights and progress on epidemic characteristics, genotyping, and preventive measures of PEDV in China: a review[J]. Microb Pathog, 2023, 181, 106185.
doi: 10.1016/j.micpath.2023.106185
|
3 |
JACOBSON M . On the infectious causes of neonatal piglet Diarrhoea—a review[J]. Vet Sci, 2022, 9 (8): 422.
|
4 |
DUBREUIL J D . Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins[J]. Braz J Microbiol, 2021, 52 (4): 2499- 2509.
doi: 10.1007/s42770-021-00567-3
|
5 |
KYLLA H , DUTTA T K , ROYCHOUDHURY P , et al. Prevalence and molecular characterization of Salmonella species associated with piglet diarrhea in North East India[J]. Pol J Vet Sci, 2019, 22 (4): 793- 797.
|
6 |
UZAL F A , NAVARRO M A , ASIN J , et al. Clostridial diarrheas in piglets: a review[J]. Vet Microbiol, 2023, 280, 109691.
doi: 10.1016/j.vetmic.2023.109691
|
7 |
CAMPILLO M , SMITH S H , GALLY D L , et al. Review of methods for the detection of Lawsonia intracellularis infection in pigs[J]. J Vet Diagn Invest, 2021, 33 (4): 621- 631.
doi: 10.1177/10406387211003551
|
8 |
ASGHARI A , EBRAHIMI M , SHAMSI L , et al. Global molecular prevalence of Giardia duodenalis in pigs (Sus domesticus): a systematic review and meta-analysis[J]. Heliyon, 2023, 9 (2): e13243.
doi: 10.1016/j.heliyon.2023.e13243
|
9 |
WANG P , LI S , ZOU Y , et al. Molecular characterization of Entamoeba spp. in pigs with diarrhea in southern China[J]. Animals, 2022, 12 (14): 1764.
doi: 10.3390/ani12141764
|
10 |
THAKOR J C , DINESH M , MANIKANDAN R , et al. Swine coronaviruses (SCoVs) and their emerging threats to swine population, inter-species transmission, exploring the susceptibility of pigs for SARS-CoV-2 and zoonotic concerns[J]. Vet Quart, 42 (1): 125- 147.
doi: 10.1080/01652176.2022.2079756
|
11 |
KUMAR D , SHEPHERD F K , SPRINGER N L , et al. Rotavirus infection in swine: genotypic diversity, immune responses, and role of gut microbiome in rotavirus immunity[J]. Pathogens, 2022, 11 (10): 1078.
doi: 10.3390/pathogens11101078
|
12 |
PAN Y F , TIAN X Y , QIN P , et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China[J]. Vet Microbiol, 2017, 211, 15- 21.
doi: 10.1016/j.vetmic.2017.09.020
|
13 |
CHEN J N , SUO X P , CAO L Y , et al. Virome analysis for identification of a novel porcine sapelovirus isolated in western China[J]. Microbiol Spectr, 2022, 10 (4): e0180122.
doi: 10.1128/spectrum.01801-22
|
14 |
谷长维, 谷长乐, 胡博. 猪流行性腹泻病毒血清中特异性IgG抗体间接ELISA检测方法的建立[J]. 中国动物传染病学报, 2022, 30 (3): 106- 112.
|
|
GU C W , GU C L , HU B . Development of indirect ELISA assay for detection of porcine epidemic diarrhea virus antibodies in sera of naturally infected pigs[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30 (3): 106- 112.
|
15 |
DING G M , FU Y G , LI B Y , et al. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China[J]. Transbound Emerg Dis, 2020, 67 (2): 678- 685.
doi: 10.1111/tbed.13385
|
16 |
PUENTE H , ARGUELLO H , CORTEY M , et al. Detection and genetic characterization of enteric viruses in diarrhoea outbreaks from swine farms in Spain[J]. Porcine Health Manag, 2023, 9 (1): 29.
doi: 10.1186/s40813-023-00326-w
|
17 |
SMOL'AK D , ŠALAMÚNOVÁ S , JACKOVÁ A , et al. Analysis of RNA virome in rectal swabs of healthy and diarrheic pigs of different age[J]. Comp Immunol Microbiol Infect Dis, 2022, 90 (90-91): 101892.
|
18 |
HUANG X Y , WU W C , TIAN X X , et al. A total infectome approach to understand the etiology of infectious disease in pigs[J]. Microbiome, 2022, 10 (1): 73.
doi: 10.1186/s40168-022-01265-4
|
19 |
MILLER A K , MIFSUD J C O , COSTA V A , et al. Slippery when wet: cross-species transmission of divergent coronaviruses in bony and jawless fish and the evolutionary history of the Coronaviridae[J]. Virus Evol, 2021, 7 (2): veab050.
doi: 10.1093/ve/veab050
|
20 |
LIU X Y , LI J , ZHANG Y M , et al. Kidney microbiota dysbiosis contributes to the development of hypertension[J]. Gut Microbes, 2022, 14 (1): 2143220.
doi: 10.1080/19490976.2022.2143220
|
21 |
SHARMA P , SINGH S P , IQBAL H M N , et al. Omics approaches in bioremediation of environmental contaminants: an integrated approach for environmental safety and sustainability[J]. Environ Res, 2022, 211, 113102.
doi: 10.1016/j.envres.2022.113102
|
22 |
WANG J , PAN Y F , YANG L F , et al. Individual bat virome analysis reveals co-infection and spillover among bats and virus zoonotic potential[J]. Nat Commun, 2023, 14 (1): 4079.
doi: 10.1038/s41467-023-39835-1
|
23 |
HUANGX Y, WUW C, TIANX X. 猪病原感染组学: 一种分析猪病原混合感染的新思路[J]. 中国预防兽医学报, 2022, 44 (6): 687.
|
|
HUANG X Y , WU W C , TIAN X X . A total infectome approach to understand the etiology of infectious disease in pigs[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44 (6): 687.
|
24 |
OLECH M . Current state of molecular and serological methods for detection of porcine epidemic diarrhea virus[J]. Pathogens, 2022, 11 (10): 1074.
doi: 10.3390/pathogens11101074
|
25 |
ZHANG H , ZOU C C , PENG O Y , et al. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission[J]. Mol Biol Evol, 2023, 40 (3): msad052.
doi: 10.1093/molbev/msad052
|
26 |
WANG L Y , BYRUM B , ZHANG Y . New variant of porcine epidemic diarrhea virus, United States, 2014[J]. Emerg Infect Dis, 2014, 20 (5): 917- 919.
doi: 10.3201/eid2005.140195
|
27 |
LI X W , LI Y , HUANG J P , et al. Isolation and oral immunogenicity assessment of porcine epidemic diarrhea virus NH-TA2020 strain: one of the predominant strains circulating in China from 2017 to 2021[J]. Virol Sin, 2022, 37 (5): 646- 655.
doi: 10.1016/j.virs.2022.08.002
|
28 |
GE F F , KANG L S , SHEN L P , et al. Pathogenicity and immunogenicity of a serially passaged attenuated genotype 2c porcine epidemic diarrhea virus cultured in suspended vero cells[J]. Front Microbiol, 2022, 13, 864377.
doi: 10.3389/fmicb.2022.864377
|
29 |
ABASS G , DUBAL Z B , RAJAK K K , et al. Molecular characterization of porcine rotavirus A from India revealing zooanthroponotic transmission[J]. Anim Biotechnol, 2022, 33 (6): 1073- 1085.
doi: 10.1080/10495398.2020.1868486
|
30 |
JOSHI M S , WALIMBE A M , ARYA S A , et al. Evolutionary analysis of all eleven genes of species C rotaviruses circulating in humans and domestic animals[J]. Mol Phylogenet Evol, 2023, 186, 107854.
doi: 10.1016/j.ympev.2023.107854
|
31 |
KUNIĆ V , MIKULETI AČG T , KOGOJ R , et al. Interspecies transmission of porcine-originated G4P[6] rotavirus A between pigs and humans: a synchronized spatiotemporal approach[J]. Front Microbiol, 2023, 14, 1194764.
doi: 10.3389/fmicb.2023.1194764
|
32 |
MALAKALINGA J J , MISINZO G , MSALYA G M , et al. Prevalence and genomic characterization of rotavirus group A genotypes in piglets from southern highlands and eastern Tanzania[J]. Heliyon, 2022, 8 (11): e11750.
doi: 10.1016/j.heliyon.2022.e11750
|
33 |
MIAO Q , PAN Y D , GONG L , et al. Full genome characterization of a human-porcine reassortment G12P[7] rotavirus and its pathogenicity in piglets[J]. Transbound Emerg Dis, 2022, 69 (6): 3506- 3517.
doi: 10.1111/tbed.14712
|
34 |
WOHLGEMUTH N , HONCE R , SCHULTZ-CHERRY S . Astrovirus evolution and emergence[J]. Infect Genet Evol, 2019, 69, 30- 37.
doi: 10.1016/j.meegid.2019.01.009
|
35 |
XIAO D , ZHANG L W , LI S Q , et al. Characterization, phylogenetic analysis, and pathogenicity of a novel genotype 2 porcine Enterovirus G[J]. Virus Res, 2023, 335, 199185.
doi: 10.1016/j.virusres.2023.199185
|
36 |
WEI R , SHANG R , CHENG K H , et al. A novel recombinant porcine sapovirus infection in piglets with diarrhea in Shandong Province, China, 2022[J]. Braz J Microbiol, 2023, 54 (2): 1309- 1314.
doi: 10.1007/s42770-023-00963-x
|
37 |
LIANG W Q , WU X D , DING Z , et al. Identification of a novel porcine Teschovirus 2 strain as causative agent of encephalomyelitis in suckling piglets with high mortality in China[J]. BMC Vet Res, 2023, 19 (1): 2.
doi: 10.1186/s12917-022-03549-1
|
38 |
LEE D , JANG G , MIN K C , et al. Coinfection with porcine epidemic diarrhea virus and Clostridium perfringens type A enhances disease severity in weaned pigs[J]. Arch Virol, 2023, 168 (6): 166.
doi: 10.1007/s00705-023-05798-3
|
39 |
NANTEL-FORTIER N , GAUTHIER M , L'HOMME Y , et al. The swine enteric virome in a commercial production system and its association with neonatal diarrhea[J]. Vet Microbiol, 2022, 266, 109366.
doi: 10.1016/j.vetmic.2022.109366
|
40 |
ZHANG B Z , QING J , YAN Z , et al. Investigation and analysis of porcine epidemic diarrhea cases and evaluation of different immunization strategies in the large-scale swine farming system[J]. Porcine Health Manag, 2023, 9 (1): 36.
doi: 10.1186/s40813-023-00331-z
|
41 |
CAPAI L , PIORKOWSKI G , MAESTRINI O , et al. Detection of porcine enteric viruses (Kobuvirus, Mamastrovirus and Sapelovirus) in domestic pigs in Corsica, France[J]. PLoS One, 2022, 17 (1): e0260161.
|