畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (6): 2231-2240.doi: 10.11843/j.issn.0366-6964.2023.06.003
邢宝瑞1,2, 刘振2, 赵海平2, 马泽芳2, 李勋胜1, 周珏1, 孙红梅1*
收稿日期:
2022-09-13
出版日期:
2023-06-23
发布日期:
2023-06-16
通讯作者:
孙红梅,主要从事鹿茸干细胞与生物医学模型研究,E-mail:sunhongmei@caas.cn
作者简介:
邢宝瑞(1997-),男,山东济南人,硕士生,主要从事鹿茸干细胞与生物医学模型研究,E-mail:760545335@qq.com
基金资助:
XING Baorui1,2, LIU Zhen2, ZHAO Haiping2, MA Zefang2, LI Xunsheng1, ZHOU Jue1, SUN Hongmei1*
Received:
2022-09-13
Online:
2023-06-23
Published:
2023-06-16
摘要: 鹿茸作为鹿科动物的一种骨质性器官,基于干细胞进行年周期性再生,独特的生物学特性使其逐渐成为生物学、医学等领域的理想模型。鹿茸的骨化与体内性激素水平变化密切相关:在鹿机体性激素水平低、肋骨骨质流失的生理环境下,鹿茸的生长速度高达2.7 cm·d-1,一边生长一边骨化;随后性激素水平上升,鹿茸便进入快速骨化期,3个月的时间可形成重达30 kg的骨质性组织。鹿茸能够在体骨骼骨质大规模流失且低水平性激素的内分泌条件下实现快速成骨的现象称之为鹿茸逆向成骨。本文从细胞分化、激素、成骨、破骨和细胞因子角度对鹿茸逆向成骨的研究现状和发生机制进行了综述,旨在探索鹿茸逆向成骨机制,为提高产茸量与动物福利健康提供借鉴与参考。
中图分类号:
邢宝瑞, 刘振, 赵海平, 马泽芳, 李勋胜, 周珏, 孙红梅. 鹿茸逆向成骨的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2231-2240.
XING Baorui, LIU Zhen, ZHAO Haiping, MA Zefang, LI Xunsheng, ZHOU Jue, SUN Hongmei. Research Progress in Reverse Osteogenesis of Deer Antler[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2231-2240.
[1] | FELEKE M,BENNETT S,CHEN J Z,et al.New physiological insights into the phenomena of deer antler:a unique model for skeletal tissue regeneration[J].J Orthop Translat,2021,27:57-66. |
[2] | 孙伟丽,赵海平,钟伟,等.鹿科动物生理周期性骨质疏松特点及研究进展[J].动物营养学报,2019,31(12):5407-5411.SUN W L,ZHAO H P,ZHONG W,et al.Characteristics of physiologic periodicity osteoporosis and research progresses in cervidae[J].Chinese Journal of Animal Nutrition,2019,31(12):5407-5411.(in Chinese) |
[3] | 吴炎,牛永梅,司博,等.鹿茸细胞生长因子的研究进展[J].黑龙江畜牧兽医,2015(19):61-63.WU Y,NIU Y M,SI B,et al.The research progress of the cell growth factors in antler velvet[J].Heilongjiang Animal Science and Veterinary Medicine,2015(19):61-63.(in Chinese) |
[4] | 孙伟丽.梅花鹿钙磷代谢规律及鹿茸功效的物质基础研究[D].北京:中国农业科学院,2019.SUN W L.Calcium and phosphorus metabolism of Sika deer and effective ingredients of velvet antler[D].Beijing:Chinese Academy of Agricultural Sciences,2019.(in Chinese) |
[5] | CHEN X,WANG Z Q,DUAN N,et al.Osteoblast-osteoclast interactions[J].Connect Tissue Res,2018,59(2):99-107. |
[6] | 杨兴.RANK/TRAF-6/NF-κB1通路在氟砷联合染毒成骨与破骨细胞共培养体系中对破骨细胞分化的调控作用[D].贵阳:贵州医科大学,2019.YANG X.Effect of combined expose of fluorine and arsenic on osteoclast differentiation and the RANK/TRAF-6/NF-κB1 pathway in a co-culture system[D].Guiyang:Guizhou Medical University,2019.(in Chinese) |
[7] | LI C Y.Histogenetic aspects of deer antler development[J].Front Biosci,2013,E5(2):479-489. |
[8] | LI C Y,CLARK D E,LORD E A,et al.Sampling technique to discriminate the different tissue layers of growing antler tips for gene discovery[J].Anat Rec,2002,268(2):125-130. |
[9] | FAUCHEUX C,NESBITT S A,HORTON M A,et al.Cells in regenerating deer antler cartilage provide a microenvironment that supports osteoclast differentiation[J].J Exp Biol,2001,204(Pt 3):443-455. |
[10] | CLARK D E,LI C Y,WANG W Y,et al.Vascular localization and proliferation in the growing tip of the deer antler[J].Anat Rec A Discov Mol Cell Evol Biol,2006,288(9):973-981. |
[11] | 李勋胜,赵海平,李春义,等.鹿茸神经再生的研究进展[J].生命科学,2021,33(8):955-961.LI X S,ZHAO H P,LI C Y,et al.Research progress of deer antler nerve regeneration[J].Chinese Bulletin of Life Sciences,2021,33(8):955-961.(in Chinese) |
[12] | ZHAO H P,CHU W H,LIU Z,et al.Deer antler:A unique model for studying mammalian organ morphogenesis[J].Anim Prod Sci,2016,56(6):946-952. |
[13] | ENSRUD K E,CRANDALL C J.Osteoporosis[J].Ann Int Med,2017,167(3):ITC17-ITC32. |
[14] | BAKSI S N,NEWBREY J W.Bone metabolism during antler growth in female reindeer[J].Calcif Tissue Int,1989,45(5):314-317. |
[15] | KIERDORF U, SCHULTZ M, KIERDORF H. The consequences of living longer-Effects of an experimentally extended velvet antler phase on the histomorphology of antler bone in fallow deer (Dama dama)[J]. J Anat. 2021, 239(5):1104-1113. |
[16] | STÉGER V,MOLNÁR A,BORSY A,et al.Antler development and coupled osteoporosis in the skeleton of red deer Cervus elaphus:Expression dynamics for regulatory and effector genes[J].Mol Genet Genomics,2010,284(4):273-287. |
[17] | JACZEWSKI Z,GIZEJEWSKI Z,BARTECKI R.The effect of cyproterone acetate on the antler cycle in red deer (Cervus elaphus L.)[J].Reprod Biol,2004,4(2):165-176. |
[18] | KIERDORF U,STOCK S R,GOMEZ S,et al.Distribution,structure,and mineralization of calcified cartilage remnants in hard antlers[J].Bone Rep,2022,16:101571. |
[19] | 张萌萌,张秀珍,邓伟民,等.骨代谢生化指标临床应用专家共识(2020)[J].中国骨质疏松杂志,2020,26(6):781-796.ZHANG M M,ZHANG X Z,DENG W M,et al.Expert consensus on clinical application of biochemical indicators of bone metabolism (2020)[J].Chinese Journal of Osteoporosis,2020,26(6):781-796.(in Chinese) |
[20] | KIM J M,LIN C J,STAVRE Z,et al.Osteoblast-osteoclast communication and bone homeostasis[J].Cells,2020,9(9):2073. |
[21] | 孙红梅,杨福合,邢秀梅,等.鹿茸干细胞成骨诱导(微粒体)培养体系的建立[C]//2010中国鹿业进展.包头:中国畜牧业协会,2010:4.SUN H M,YANG F H,XING X M,et al.Establishment of micromass culture system for antler stem cell induction toward osteoblast differentiation in vitros[C]//China Deer Industry Development 2010.Baotou:China Animal Agriculture Association,2010:4.(in Chinese) |
[22] | WANG D T,BERG D,BA H X,et al.Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ—deer antler[J].Cell Death Dis,2019,10(6):443. |
[23] | TSCHAFFON M E A,REBER S O,SCHOPPA A,et al.A novel in vitro assay to study chondrocyte-to-osteoblast transdifferentiation[J].Endocrine,2022,75(1):266-275. |
[24] | FULLER K,LAWRENCE K M,ROSS J L,et al.Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts[J].Bone,2008,42(1):200-211. |
[25] | NARDUCCI P,NICOLIN V.Differentiation of activated monocytes into osteoclast-like cells on a hydroxyapatite substrate:An in vitro study[J].Ann Anat,2009,191(4):349-355. |
[26] | ASAGIRI M,TAKAYANAGI H.The molecular understanding of osteoclast differentiation[J].Bone,2007,40(2):251-264. |
[27] | KUROTAKI D,YOSHIDA H,TAMURA T.Epigenetic and transcriptional regulation of osteoclast differentiation[J].Bone,2020,138:115471. |
[28] | YAO Z Q,GETTING S J,LOCKE I C.Regulation of TNF-induced osteoclast differentiation[J].Cells,2021,11(1):132. |
[29] | ZHU L X,TANG Y,LI X Y,et al.Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases[J].Sci Transl Med,2020,12(529):eaaw6143. |
[30] | CHARLES J F,ALIPRANTIS A O.Osteoclasts:more than 'bone eaters'[J].Trends Mol Med,2014,20(8):449-459. |
[31] | ONO T,NAKASHIMA T.Recent advances in osteoclast biology[J].Histochem Cell Biol,2018,149(4):325-341. |
[32] | FAUCHEUX C,HORTON M A,PRICE J S.Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts:evidence for parathyroid hormone-related protein and receptor activator of NF-κB-dependent effects on osteoclast formation in regenerating mammalian bone[J].J Bone Miner Res,2002,17(3):455-464. |
[33] | GOLTZMAN D.Physiology of parathyroid hormone[J].Endocrinol Metab Clin North Am,2018,47(4):743-758. |
[34] | WU H J,XUE Y,ZHANG Y,et al.PTH1-34 promotes osteoblast formation through Beclin1-dependent autophagic activation[J].J Bone Miner Metab,2021,39(4):572-582. |
[35] | DEMARET T,WINTJENS R,SANA G,et al.Case report:inactivating PTH/PTHrP signaling disorder type 1 presenting with PTH resistance[J].Front Endocrinol,2022,13:928284. |
[36] | TAO D Y,ZHAO J X,DENG G Z,et al.Relationship between velvet antler ossification and PTH and androgen serum levels in Tarim Red deer (Cervus elaphus)[J].J Exp Zool A Ecol Genet Physiol,2015,323(10):696-703. |
[37] | BARLING P M,LIU H,MATICH J,et al.Expression of PTHrP and the PTH/PTHrP receptor in growing red deer antler[J].Cell Biol Int,2004,28(10):661-673. |
[38] | FAUCHEUX C,NICHOLLS B M,ALLEN S,et al.Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler[J].Dev Dyn,2004,231(1):88-97. |
[39] | GUO B,WANG S T,DUAN C C,et al.Effects of PTHrP on chondrocytes of sika deer antler[J].Cell Tissue Res,2013,354(2):451-460. |
[40] | WANG S T,GAO Y J,DUAN C C,et al.Effects of PTHrP on expression of MMP9 and MMP13 in sika deer antler chondrocytes[J].Cell Biol Int,2013,37(12):1300-1307. |
[41] | DE OLIVEIRA D H A,FIGHERA T M,BIANCHET L C,et al.Androgens and bone[J].Minerva Endocrinol,2012,37(4):305-314. |
[42] | ALMEIDA M,LAURENT M R,DUBOIS V,et al.Estrogens and androgens in skeletal physiology and pathophysiology[J].Physiol Rev,2017,97(1):135-187. |
[43] | BARTOS L,SCHAMS D,BUBENIK G A.Testosterone,but not IGF-1,LH,prolactin or cortisol,may serve as antler-stimulating hormone in red deer stags (Cervus elaphus)[J].Bone,2009,44(4):691-698. |
[44] | WEERASEKERA D S,PERERA S J,NANAYAKKARA D K K,et al.The antler cycle and fecal testosterone of male sambar deer Rusa unicolor unicolor at the Horton plains national park in Sri Lanka[J].BioMed Res Int,2020,2020:6903407. |
[45] | SEMPÉRÉ A J,LACROIX A.Temporal and seasonal relationships between LH,testosterone and antlers in fawn and adult male roe deer (Capreolus capreolus L.):a longitudinal study from birth to four years of age[J].Acta Endocrinol (Copenh),1982,99(2):295-301. |
[46] | SUTTIE J M,FENNESSY P F,LAPWOOD K R,et al.Role of steroids in antler growth of red deer stags[J].J Exp Zool,1995,271(2):120-130. |
[47] | KIERDORF U,KIERDORF H,KNUTH S.Effects of castration on antler growth in fallow deer (Dama dama L.)[J].J Exp Zool,1995,273(1):33-43. |
[48] | KOLLE R,KIERDORF U,FISCHER K.Effects of an antiandrogen treatment on morphological characters and physiological functions of male fallow deer (Dama dama L.)[J].J Exp Zool,1993,267(3):288-298. |
[49] | 刘振.雄性激素调控鹿茸发育干细胞组织的蛋白组学研究[D].北京:中国农业科学院,2019.LIU Z.Proteomics study of the antler stem cell tissue that was activated by circulating androgen hormones for antler development[D].Beijing:Chinese Academy of Agricultural Sciences,2019.(in Chinese) |
[50] | 耿爽.睾酮对梅花鹿鹿茸间充质细胞及软骨细胞增殖与分化的影响[D].长春:吉林大学,2017.GENG S.The effects of testosterone on proliferation and differentiation of sika deer antler mesenchymal cells and chondrocytes[D].Changchun:Jilin University,2017.(in Chinese) |
[51] | 孙晓琪.雌二醇通过G蛋白偶联雌激素受体30(GPR30)/ERK1/2信号通路调节MC3T3-E1细胞线粒体自噬的分子机制研究[D].沈阳:中国医科大学,2018.SUN X Q.Effects and molecular mechanisms of 17β-estradiol on mitophagy in MC3T3-E1 cells via g protein-coupled estrogen receptor 30(GPR30) and the ERK1/2 signaling pathway[D].Shenyang:China Medical University,2018.(in Chinese) |
[52] | 张萌萌.雌激素与雌激素受体骨代谢调节作用[J].中国骨质疏松杂志,2019,25(5):704-708.ZHANG M M.Estrogen and estrogen receptors on bone metabolism regulation[J].Chinese Journal of Osteoporosis,2019,25(5):704-708.(in Chinese) |
[53] | 沈国蔚,成心锟,颜世昌,等.CFTR在雌激素诱导破骨细胞凋亡中的作用机制研究[J].中国骨与关节损伤杂志,2018,33(11):1150-1152.SHEN G W,CHENG X K,YAN S C,et al.Role and mechanism of CFTR in estrogen-induced apoptosis of osteoclasts[J].Chinese Journal of Bone and Joint Injury,2018,33(11):1150-1152.(in Chinese) |
[54] | YOSHIMOTO F K,GUENGERICH F P.Mechanism of the third oxidative step in the conversion of androgens to estrogens by cytochrome P45019A1 steroid aromatase[J].J Am Chem Soc,2014,136(42):15016-15025. |
[55] | ZENG X Z,HE L G,WANG S,et al.Aconine inhibits RANKL-induced osteoclast differentiation in RAW264.7 cells by suppressing NF-κB and NFATc1 activation and DC-STAMP expression[J].Acta Pharmacol Sin,2016,37(2):255-263. |
[56] | CHEN J Y,HENDRIKS M,CHATZIS A,et al.Bone vasculature and bone marrow vascular niches in health and disease[J].J Bone Miner Res,2020,35(11):2103-2120. |
[57] | WU L L,LUO Z H,LIU Y T,et al.Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation[J].Stem Cell Res Ther,2019,10(1):375. |
[58] | KIM K,KIM J H,KIM I,et al.TRIM38 regulates NF-κB activation through TAB2 degradation in osteoclast and osteoblast differentiation[J].Bone,2018,113:17-28. |
[59] | MURUGANANDAN S,IONESCU A M,SINAL C J.At the crossroads of the adipocyte and osteoclast dierentiation programs:future therapeutic perspectives[J].Int J Mol Sci,2020,21(7):2277. |
[60] | REN X Y,ZHOU Q,FOULAD D,et al.Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds[J].Sci Adv,2019,5(6):eaaw4991. |
[61] | TAKAYANAGI H.Osteoimmunology:shared mechanisms and crosstalk between the immune and bone systems[J].Nat Rev Immunol,2007,7(4):292-304. |
[62] | GREENHILL C.Osteoprotegerin sources examined[J].Nat Rev Endocrinol,2020,16(12):678. |
[63] | WEI B,WANG C,YAN C,et al.Osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in rabbits[J].J Bone Miner Metab,2020,38(4):432-441. |
[64] | CAWLEY K M,BUSTAMANTE-GOMEZ N C,GUHA A G,et al.Local production of osteoprotegerin by osteoblasts suppresses bone resorption[J].Cell Rep,2020,32(10):108052. |
[65] | PARK J,JEON B,KANG S,et al.Study on the changes in enzyme and insulin-like growth factor-1 concentrations in blood serum and growth characteristics of velvet antler during the antler growth period in sika deer (Cervus nippon)[J].Asian-Australas J Anim Sci,2015,28(9):1303-1308. |
[66] | YANG Z Q,ZHANG H L,DUAN C C,et al.IGF1 regulates RUNX1 expression via IRS1/2:Implications for antler chondrocyte differentiation[J].Cell Cycle (Georgetown,Tex.),2017,16(6):522-532. |
[67] | ZHONG J H,ZHANG J C,ZHOU Z W,et al.Novel insights into the effect of deer IGF-1 on chondrocyte viability and IL-1β-induced inflammation response[J/OL].J Biochem Mol Toxicol,2022:e23227[2022-12-29].https://pubmed.ncbi.nlm.nih.gov/36177510/. doi: 10.1002/jbt.23227. |
[68] | 杨占清.IGF-1在梅花鹿茸角再生过程中的作用及其调控机理[D].长春:吉林大学,2017.YANG Z Q.Effects and regulatory mechanisms of IGF-1 on the regeneration of sika deer antlers[D].Changchun:Jilin University,2017.(in Chinese) |
[69] | 丁军莉.IGF1对梅花鹿鹿茸间充质细胞增殖分化的调控[D].长春:吉林大学,2019.DING J L.Regulation of IGF-1 on proliferation and differentiation of sika deer antler Mesenchymal cells[D].Changchun:Jilin University,2019.(in Chinese) |
[70] | LANGE J,SAPOZHNIKOVA A,LU C Y,et al.Action of IL-1β during fracture healing[J].J Orthop Res,2010,28(6):778-784. |
[71] | DING J,GHALI O,LENCEL P,et al.TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells[J].Life Sci,2009,84(15-16):499-504. |
[72] | AMARASEKARA D S,YUN H,KIM S,et al.Regulation of osteoclast differentiation by cytokine networks[J].Immune Netw,2018,18(1):e8. |
[73] | GUO C,YANG X G,WANG F,et al.IL-1α induces apoptosis and inhibits the osteoblast differentiation of MC3T3-E1 cells through the JNK and p38 MAPK pathways[J].Int J Mol Med,2016,38(1):319-327. |
[74] | WANG Q,DELCORDE J,TANG T,et al.Regulation of IL-1 signaling through control of focal adhesion assembly[J].FASEB J,2018,32(6):3119-3132. |
[75] | ROLPH D,DAS H.Transcriptional regulation of osteoclastogenesis:the emerging role of KLF2[J].Front Immunol,2020,11:937. |
[76] | YOSHIDA Y,YAMASAKI S,OI K,et al.IL-1β Enhances Wnt Signal by Inhibiting DKK1[J].Inflammation,2018,41(5):1945-1954. |
[77] | FUKUI N,ZHU Y,MALONEY W J,et al.Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-α in normal and osteoarthritic chondrocytes[J].J Bone Joint Surg Am,2003,85-A Suppl 3:59-66. |
[78] | YANG C H,CAI W J,WEN H,et al.Pilose antler peptide protects osteoblasts from inflammatory and oxidative injury through EGF/EGFR signaling[J].Int J Biol Macromol,2017,99:15-20. |
[79] | CHEN G Q,DENG C X,LI Y P.TGF-β and BMP signaling in osteoblast differentiation and bone formation[J].Int J Biol Sci,2012,8(2):272-288. |
[80] | 韩玉帅.TGF-β家族及其受体在梅花鹿茸角中的表达与调节[D].长春:吉林大学,2011.HAN Y S.Expression and regulation of TGF-β family and their receptors in sika deer antler[D].Changchun:Jilin University,2011.(in Chinese) |
[81] | LIU M X,HAN X Y,LIU H Y,et al.The effects of CRISPR-Cas9 knockout of the TGF-β1 gene on antler cartilage cells in vitro[J].Cell Mol Biol Lett,2019,24:44. |
[82] | CHEN D Y,LI Y J,JIANG R F,et al.Effects and mechanism of lncRNA-27785.1 that regulates TGF-β1 of sika deer on antler cell proliferation[J].J Cell Physiol,2021,236(8):5742-5756. |
[83] | MA L,YANG Z Q,DING J L,et al.Function and regulation of transforming growth factor β1 signalling in antler chondrocyte proliferation and differentiation[J].Cell Prolif,2019,52(4):e12637. |
[1] | 罗承慧, 高江瑞, 陈俊威, 魏春洁, 韦双双, 裴业春. 尘螨诱导特应性皮炎小鼠模型和哮喘小鼠模型的构建[J]. 畜牧兽医学报, 2024, 55(3): 1257-1267. |
[2] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[3] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[4] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[5] | 神英超, 陶力, 任宏, 王希生, 田书岳, 杜明, 芒来, 格日乐其木格. 卵母细胞成熟相关激素和生长因子受体在马扩展型和紧凑型卵丘-卵母细胞复合体表达的研究[J]. 畜牧兽医学报, 2023, 54(9): 3735-3744. |
[6] | 贺名扬, 马钰静, 王泳, 杨若晨, 刘月琴, 张英杰, 段春辉. 褪黑激素对绵羊卵巢颗粒细胞增殖、凋亡、类固醇激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(8): 3313-3324. |
[7] | 王唯, 贺小云, 储明星. 昼夜节律与雌激素协同调控哺乳动物生殖的研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1771-1781. |
[8] | 相彩霞, 王相国, 李俊玫, 支飞杰, 房姣阳, 郑维芳, 陈家露, 靳亚平, 王爱华. 布鲁氏菌Ⅳ型分泌系统效应蛋白VceC对山羊滋养层细胞内质网应激和性腺激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(3): 1210-1220. |
[9] | 杨晓伟, 赵自亮, 付雨, 于子肖, 赵永聚. TET1基因对小鼠uNK细胞增殖及IFN-γ、VEGF-C和TGF-β1转录水平的影响[J]. 畜牧兽医学报, 2023, 54(3): 1221-1228. |
[10] | 郭紫晶, 陈飞, 张志雄, 柏玲, 张志东, 李彦敏. 白细胞介素-10对口蹄疫病毒感染小鼠T细胞增殖及其表达TNF-α、IFN-γ和IL-2的影响[J]. 畜牧兽医学报, 2023, 54(2): 694-705. |
[11] | 杜海东, 娜仁花. 反刍动物妊娠期和泌乳期生理代谢和微生物变化及其对子代发育的影响研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4458-4467. |
[12] | 刘杰, 丛玮, 赵敏蝶, 赵茹茜. AA肉鸡和如皋黄鸡海马和下丘脑GR和FKBP5的表达及其与应激敏感性的关系[J]. 畜牧兽医学报, 2023, 54(11): 4766-4776. |
[13] | 邢文文, 齐南南, 李梦轩, 刘吉英. YY1作用机制及在动物繁殖调控中的研究进展[J]. 畜牧兽医学报, 2023, 54(10): 4040-4049. |
[14] | 马子明, 郭星汝, 戴天姝, 魏士昊, 史远刚, 淡新刚. 牛子宫复旧调控机制及促进子宫复旧方法的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 58-68. |
[15] | 桑雷, 陈冬金, 孙世坤, 高承芳, 王锦祥, 陈岩锋, 谢喜平. GnIH基因克隆、表达及对幼龄公兔生殖激素的影响[J]. 畜牧兽医学报, 2023, 54(1): 201-212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||