畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (9): 2845-2857.doi: 10.11843/j.issn.0366-6964.2022.09.003
周敏1, 汪凯歌2, 张濂1, 马曦1*
收稿日期:
2021-12-21
出版日期:
2022-09-23
发布日期:
2022-09-23
通讯作者:
马曦,主要从事仔猪生理与营养代谢调控研究,E-mail:maxi@cau.edu.cn
作者简介:
周敏(1993-),女,山东淄博人,博士生,主要从事动物营养与饲料科学研究,E-mail:18854811609@163.com
基金资助:
ZHOU Min1, WANG Kaige2, ZHANG Lian1, MA Xi1*
Received:
2021-12-21
Online:
2022-09-23
Published:
2022-09-23
摘要: 骨骼肌的质量不仅影响着人或动物机体的运动能力和健康状态,还影响着畜禽的肌肉产量和品质。随着对微生物功能的深度挖掘,肠-脑轴、肠-肝轴、肠-脂轴等由微生物及其代谢产物介导的信号途径均被证实参与了机体的能量代谢。近年来,微生物-肠道-骨骼肌轴也被证实,因此通过调控肠道菌群或其代谢产物进而调节机体骨骼肌代谢为改善肌肉产量和品质提供了新的思路。本文主要综述了肠道微生物及其关键代谢产物在骨骼肌功能和糖脂代谢等方面的潜在作用和机制,并简要总结了菌群介导的调控骨骼肌功能的潜在手段,为畜禽养殖中改善肉质提供了一定的参考和新思路。
中图分类号:
周敏, 汪凯歌, 张濂, 马曦. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2845-2857.
ZHOU Min, WANG Kaige, ZHANG Lian, MA Xi. Advances in Microbiota-Gut-Muscle Axis Regulating Skeletal Muscle Metabolism and Function[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2845-2857.
[1] | 刘勇军, 姜艳彬.兽药残留对畜禽产品质量安全的危害与防控对策[J].北京工商大学学报:自然科学版, 2012, 30(1):10-16.LIU Y J, JIANG Y B.Study on hazards and control measures of animal drug residues in animal products[J].Journal of Beijing Technology and Business University:Natural Science Edition, 2012, 30(1):10-16.(in Chinese) |
[2] | 杨晓伟.畜禽产品抗生素残留的危害及控制[J].中国动物保健, 2019, 21(8):50-51.YANG X W.Effects and measures of antibiotic residues in livestock and poultry products[J].China Animal Health, 2019, 21(8):50-51.(in Chinese) |
[3] | 尹靖东.动物肌肉生物学与肉品科学[M].北京:中国农业大学出版社, 2011.YIN J D.Animal muscle biology and meat quality[M].Beijing:China Agricultural University Press, 2011.(in Chinese) |
[4] | 赵俊星, 岳万福.表观遗传调控骨骼肌发育的研究进展[J].中国农业科技导报, 2014, 16(3):42-47.ZHAO J X, YUE W F.Control of skeletal muscle myogenesis by epigenetic regulations[J].Journal of Agricultural Science and Technology, 2014, 16(3):42-47.(in Chinese) |
[5] | DENETCLAW W F, CHRIST B, ORDAHL C P.Location and growth of epaxial myotome precursor cells[J].Development, 1997, 124(8):1601-1610. |
[6] | GROS J, MANCEAU M, THOMé V, et al.A common somitic origin for embryonic muscle progenitors and satellite cells[J].Nature, 2005, 435(7044):954-958. |
[7] | CHAL J, POURQUIé O.Making muscle:skeletal myogenesis in vivo and in vitro[J].Development, 2017, 144(12):2104-2122. |
[8] | 张 勇.MicroRNA-378b-3p对猪骨骼肌纤维类型转化的调节作用及其机制[D].雅安:四川农业大学, 2018.ZHANG Y.The role of MicroRNA-378b-3p in regulating porcine skeletal muscle fiber type conversion and its mechanism[D].Ya'an:Sichuan Agricultural University, 2018.(in Chinese) |
[9] | 杨秋梅.Pax3/Pax7对肌纤维类型的决定机制及维生素D3的调控作用[D].雅安:四川农业大学, 2017.YANG Q M.The mechanism of Pax3/Pax7 determining the types of skeletal muscle fibers and its regulation by vitamin D3[D].Ya'an:Sichuan Agricultural University, 2017.(in Chinese) |
[10] | BÄCKHED F, MANCHESTER J K, SEMENKOVICH C F, et al.Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J].Proc Natl Acad Sci U S A, 2007, 104(3):979-984. |
[11] | SONNENBURG J L, BÄCKHED F.Diet-microbiota interactions as moderators of human metabolism[J].Nature, 2016, 535(7610):56-64. |
[12] | LAHIRI S, KIM H, GARCIA-PEREZ I, et al.The gut microbiota influences skeletal muscle mass and function in mice[J].Sci Transl Med, 2019, 11(502):eaan5662. |
[13] | YAN H L, DIAO H, XIAO Y, et al.Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J].Sci Rep, 2016, 6(1):31786. |
[14] | BÄCKHED F, DING H, WANG T, et al.The gut microbiota as an environmental factor that regulates fat storage[J].Proc Natl Acad Sci U S A, 2004, 101(44):15718-15723. |
[15] | CHANG H, KWON O, SHIN M S, et al.Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation[J].J Appl Physiol, 2018, 125(3):715-722. |
[16] | ROBCIUC M R, SKROBUK P, ANISIMOV A, et al.Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes[J].PLoS One, 2012, 7(10):e46212. |
[17] | DRESSEL U, ALLEN T L, PIPPAL J B, et al.The Peroxisome Proliferator-Activated Receptor β/δ Agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells[J].Mol Endocrinol, 2003, 17(12):2477-2493. |
[18] | DEFRONZO R A, JACOT E, JEQUIER E, et al.The effect of insulin on the disposal of intravenous glucose:Results from indirect calorimetry and hepatic and femoral venous catheterization[J].Diabetes, 1981, 30(12):1000-1007. |
[19] | SHULMAN G I, ROTHMAN D L, JUE T, et al.Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy[J].N Engl J Med, 1990, 322(4):223-228. |
[20] | KERSTEN S, DESVERGNE B, WAHLI W.Roles of PPARs in health and disease[J].Nature, 2000, 405(6785):421-424. |
[21] | PHUA W W T, WONG M X Y, LIAO Z H, et al.An apparent functional consequence in skeletal muscle physiology via peroxisome proliferator-activated receptors[J].Int J Mol Sci, 2018, 19(5):1425. |
[22] | MANICKAM R, DUSZKA K, WAHLI W.PPARs and microbiota in skeletal muscle health and wasting[J].Int J Mol Sci, 2020, 21(21):8056. |
[23] | ARE A, ARONSSON L, WANG S G, et al.Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells[J].Proc Natl Acad Sci U S A, 2008, 105(6):1943-1948. |
[24] | COUVIGNY B, DE WOUTERS T, KACI G, et al.Commensal Streptococcus salivarius modulates PPARγ transcriptional activity in human intestinal epithelial cells[J].PLoS One, 2015, 10(5):e0125371. |
[25] | NEPELSKA M, DE WOUTERS T, JACOUTON E, et al.Commensal gut bacteria modulate phosphorylation-dependent PPARγ transcriptional activity in human intestinal epithelial cells[J].Sci Rep, 2017, 7(1):43199. |
[26] | SCHWAB M, REYNDERS V, LOITSCH S, et al.Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NFκB signalling[J].Mol Immunol, 2007, 44(15):3625-3632. |
[27] | KINDT A, LIEBISCH G, CLAVEL T, et al.The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice[J].Nat Commun, 2018, 9(1):3760. |
[28] | YOO S R, KIM Y J, PARK D Y, et al.Probiotics L.plantarum and L.curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity[J].Obesity, 2013, 21(12):2571-2578. |
[29] | AN H M, PARK S Y, LEE D K, et al.Antiobesity and lipid-lowering effects of Bifidobacterium spp.in high fat diet-induced obese rats[J].Lipids Health Dis, 2011, 10(1):116. |
[30] | GOODPASTER B H, HE J, WATKINS S, et al.Skeletal muscle lipid content and insulin resistance:evidence for a paradox in endurance-trained athletes[J].J Clin Endocrinol Metab, 2001, 86(12):5755-5761. |
[31] | NAY K, JOLLET M, GOUSTARD B, et al.Gut bacteria are critical for optimal muscle function:a potential link with glucose homeostasis[J].Am J Physiol Endocrinol Metab, 2019, 317(1):E158-E171. |
[32] | HANSEN T H, GØBEL R J, HANSEN T, et al.The gut microbiome in cardio-metabolic health[J].Genome Med, 2015, 7(1):33. |
[33] | TOLHURST G, HEFFRON H, LAM Y S, et al.Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2[J].Diabetes, 2012, 61(2):364-371. |
[34] | MA N, MA X.Dietary amino acids and the gut-microbiome-immune axis:physiological metabolism and therapeutic Prospects[J].Compr Rev Food Sci Food Saf, 2019, 18(1):221-242. |
[35] | ZHANG J, ZHU S W, MA N, et al.Metabolites of microbiota response to tryptophan and intestinal mucosal immunity:a therapeutic target to control intestinal inflammation[J].Med Res Rev, 2021, 41(2):1061-1088. |
[36] | MA N, HE T, JOHNSTON L J, et al.Host-microbiome interactions:the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling[J].Gut Microbes, 2020, 11(5):1203-1219. |
[37] | ZHANG S M, ZHAO J W, XIE F, et al.Dietary fiber-derived short-chain fatty acids:a potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease[J].Obes Rev, 2021, 22(11):e13316. |
[38] | ZHOU M, JOHNSTON L J, WU C D, et al.Gut microbiota and its metabolites:bridge of dietary nutrients and obesity-related diseases[J].Crit Rev Food Sci Nutr, 2021, 26:1-18. |
[39] | OKAMOTO T, MORINO K, UGI S, et al.Microbiome potentiates endurance exercise through intestinal acetate production[J].Am J Physiol Endocrinol Metab, 2019, 316(5):E956-E966. |
[40] | HUANG W C, CHEN Y H, CHUANG H L, et al.Investigation of the effects of microbiota on exercise physiological adaption, performance, and energy utilization using a gnotobiotic animal model[J].Front Microbiol, 2019, 10:1906. |
[41] | SCHIEBER A M P, LEE Y M, CHANG M W, et al.Disease tolerance mediated by microbiome E.coli involves inflammasome and IGF-1 signaling[J].Science, 2015, 350(6260):558-563. |
[42] | YAN H L, YU B, DEGROOTE J, et al.Antibiotic affects the gut microbiota composition and expression of genes related to lipid metabolism and myofiber types in skeletal muscle of piglets[J].BMC Vet Res, 2020, 16(1):392. |
[43] | GROSICKI G J, FIELDING R A, LUSTGARTEN M S.Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function:biological basis for a gut-muscle axis[J].Calcif Tissue Int, 2018, 102(4):433-442. |
[44] | CHEN Y M, WEI L, CHIU Y S, et al.Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J].Nutrients, 2016, 8(4):205. |
[45] | HENAGAN T M, STEFANSKA B, FANG Z D, et al.Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning[J].Brit J Pharmacol, 2015, 172(11):2782-2798. |
[46] | PAN J H, KIM J H, KIM H M, et al.Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties[J].Biosci Biotechnol Biochem, 2015, 79(9):1535-1541. |
[47] | NI Y H, YANG X, ZHENG L J, et al.Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota[J].Mol Nutr Food Res, 2019, 63(22):1900603. |
[48] | 张子涵, 杨 欢, 黄庆生, 等.骨骼肌系统与免疫系统之间的网络与调控[J].医用生物力学, 2021, 36(S1):298.ZHANG Z H, YANG H, HUANG Q S, et al.Network and regulation between skeletal muscle system and immune system[J].Journal of Medical Biomechanics, 2021, 36(S1):298.(in Chinese) |
[49] | CRAWFORD M, WHISNER C, AL-NAKKASH L, et al.Six-week high-fat diet alters the gut microbiome and promotes cecal inflammation, endotoxin production, and simple steatosis without obesity in male rats[J].Lipids, 2019, 54(2-3):119-131. |
[50] | MCCARTHY J J, ESSER K A.Anabolic and catabolic pathways regulating skeletal muscle mass[J].Curr Opin Clin Nutr Metab Care, 2010, 13(3):230-235. |
[51] | JI L L, GOMEZCABRERA M C, STEINHAFEL N, et al.Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle[J].FASEB J, 2004, 18(13):1499-1506. |
[52] | PRZEWŁÓCKA K, FOLWARSKI M, KA AZ'U MIERCZAK-SIEDLECKA K, et al.Gut-muscle axis exists and may affect skeletal muscle adaptation to training[J].Nutrients, 2020, 12(5):1451. |
[53] | KÅRLUND A, GÓMEZ-GALLEGO C, TURPEINEN A M, et al.Protein supplements and their relation with nutrition, microbiota composition and health:is more protein always better for sportspeople?[J].Nutrients, 2019, 11(4):829. |
[54] | PETERNELJ T T, COOMBES J S.Antioxidant supplementation during exercise training[J].Sports Med, 2011, 41(12):1043-1069. |
[55] | SAFDAR A, HAMADEH M J, KACZOR J J, et al.Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J].PLoS One, 2010, 5(5):e10778. |
[56] | KACZOR J J, ROBERTSHAW H A, TARNOPOLSKY M A.Higher oxidative stress in skeletal muscle of McArdle disease patients[J].Mol Genet Metab Rep, 2017, 12:69-75. |
[57] | BRANDT N, GUNNARSSON T P, HOSTRUP M, et al.Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle[J].Physiol Rep, 2016, 4(14):e12844. |
[58] | SPYROPOULOS B G, MISIAKOS E P, FOTIADIS C, et al.Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis[J].Digest Dis Sci, 2011, 56(2):285-294. |
[59] | QIAO Y, SUN J, DING Y Y, et al.Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress[J].Appl Microbiol Biotechnol, 2013, 97(4):1689-1697. |
[60] | 孔祥峰.结肠微生物氮代谢与机体健康研究进展[J].饲料与畜牧, 2013(4):10-17.KONG X F.Research progress of colonic microbial nitrogen metabolism and body health[J].Animal Agriculture, 2013(4):10-17.(in Chinese) |
[61] | DE SPIEGELEER A, ELEWAUT D, VAN DEN NOORTGATE N, et al.Quorum sensing molecules as a novel microbial factor impacting muscle cells[J].Biochim et Biophys Acta Mol Basis Dis, 2020, 1866(3):165646. |
[62] | ZARRINPAR A, CHAIX A, XU Z Z, et al.Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism[J].Nat Commun, 2018, 9(1):2872. |
[63] | HOUGHTON M J, KERIMI A, MOULY V, et al.Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism[J].FASEB J, 2019, 33(2):1887-1898. |
[64] | DE VADDER F, KOVATCHEVA-DATCHARY P, GONCALVES D, et al.Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J].Cell, 2014, 156(1-2):84-96. |
[65] | DE VADDER F, KOVATCHEVA-DATCHARY P, ZITOUN C, et al.Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J].Cell Metab, 2016, 24(1):151-157. |
[66] | CANFORA E E, JOCKEN J W, BLAAK E E.Short-chain fatty acids in control of body weight and insulin sensitivity[J].Nat Rev Endocrinol, 2015, 11(10):577-591. |
[67] | 吕晓婷.短链脂肪酸对骨骼肌糖代谢及炎症信号的作用研究[D].天津:天津医科大学, 2019.LV X T.Effects of short-chain fatty acids on glucose metabolism and inflammatory signals in skeletal muscle[D].Tianjin:Tianjin Medical University, 2019.(in Chinese) |
[68] | POTTHOFF M J, BONEY-MONTOYA J, CHOI M, et al.FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway[J].Cell Metab, 2011, 13(6):729-738. |
[69] | KIR S, BEDDOW S A, SAMUEL V T, et al.FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis[J].Science, 2011, 331(6024):1621-1624. |
[70] | MOLINARO A, WAHLSTRÖM A, MARSCHALL H U.Role of bile acids in metabolic control[J].Trends Endocrinol Metab, 2018, 29(1):31-41. |
[71] | DI CIAULA A, GARRUTI G, BACCETTO R L, et al.Bile acid physiology[J].Ann Hepatol, 2017, 16(S1):s4-s14. |
[72] | WIERSINGA W M.T4+T3 Combination therapy:any progress?[J].Endocrine, 2019, 66(1):70-78. |
[73] | LAMB N J, GIZARD F.Dietary apigenin in the prevention of endothelial cell dysfunction[J].J Cardiovasc Pharmacol, 2019, 74(6):513-515. |
[74] | YANG S J, LI X Y, YANG F, et al.Gut microbiota-dependent marker TMAO in promoting cardiovascular disease:inflammation mechanism, clinical prognostic, and potential as a therapeutic target[J].Front Pharmacol, 2019, 10:1360. |
[75] | TAESUWAN S, CHO C E, MALYSHEVA O V, et al.The metabolic fate of isotopically labeled trimethylamine-N-oxide (TMAO) in humans[J].J Nutr Biochem, 2017, 45:77-82. |
[76] | HSIEH T J, JAW T S, CHUANG H Y, et al.Muscle metabolism in Duchenne muscular dystrophy assessed by in vivo proton magnetic resonance spectroscopy[J].J Comput Assist Tomogr, 2009, 33(1):150-154. |
[77] | ØVERLAND M, RØRVIK K A, SKREDE A.Effect of trimethylamine oxide and betaine in swine diets on growth performance, carcass characteristics, nutrient digestibility, and sensory quality of pork[J].J Anim Sci, 1999, 77(8):2143-2153. |
[78] | 许梓荣, 汪以真, 朱 梅.氧化三甲胺对生长肥育猪胴体组成的影响[J].中国畜牧杂志, 2002, 38(4):19-20.XU Z R, WANG Y Z, ZHU M.Effect of TMAO on the carcass quality of growing-finishing pigs[J].Chinese Journal of Animal Science, 2002, 38(4):19-20.(in Chinese) |
[79] | 张玉寒, 陈雪飞, 张 靓.骨骼肌支链氨基酸代谢小分子与运动[J].生理科学进展, 2021, 52(2):139-145.ZHANG Y H, CHEN X F, ZHANG L.Branched chain amino acids related metabolites of skeletal muscle and exercise[J].Progress in Physiological Sciences, 2012, 52(2):139-145.(in Chinese) |
[80] | NIE C X, HE T, ZHANG W J, et al.Branched chain amino acids:beyond nutrition metabolism[J].Int J Mol Sci, 2018, 19(4):954. |
[81] | NEWGARD C B, AN J, BAIN J R, et al.A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance[J].Cell Metab, 2009, 9(4):311-326. |
[82] | PEDERSEN H K, GUDMUNDSDOTTIR V, NIELSEN H B, et al.Human gut microbes impact host serum metabolome and insulin sensitivity[J].Nature, 2016, 535(7612):376-381. |
[83] | FOURÉ A, BENDAHAN D.Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage?A systematic review[J].Nutrients, 2017, 9(10):1047. |
[84] | ROBERTS L D, BOSTRÖM P, O'SULLIVAN J F, et al.β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors[J].Cell Metab, 2014, 19(1):96-108. |
[85] | MORALES F E, FORSSE J S, ANDRE T L, et al.BAIBA does not regulate UCP-3 expression in human skeletal muscle as a response to aerobic exercise[J].J Am Coll Nutr, 2017, 36(3):200-209. |
[86] | BERTON R, CONCEIÇÃO M S, LIBARDI C A, et al.Metabolic time-course response after resistance exercise:a metabolomics approach[J].J Sports Sci, 2017, 35(12):1211-1218. |
[87] | 孙旺斌, 付 琪, 薛瑞林, 等.不同枣粉水平对陕北白绒山羊肉挥发性风味物质的影响[J].动物营养学报, 2021, 33(10):5664-5676.SUN W B, FU Q, XUE R L, et al.Effects of different levels of jujube powder on volatile flavor substances of north Shaanxi white cashmere goat meat[J].Chinese Journal of Animal Nutrition, 2021, 33(10):5664-5676.(in Chinese) |
[88] | 佘韶峰, 赵天章, 李慧英.美洲大蠊虫粉对肉鸡生长性能、免疫功能、肌肉抗氧化能力及肉品质的影响[J].动物营养学报, 2021, 33(12):6813-6823.SHE S F, ZHAO T Z, LI H Y.Effects of Periplaneta americana powder on growth performance, immune function, muscle antioxidant capacity and meat quality of broilers[J].Chinese Journal of Animal Nutrition, 2021, 33(12):6813-6823.(in Chinese) |
[89] | 王 彬, 王庆争, 郭志强, 等.茶叶渣替代麸皮对肉兔生长性能、屠宰性能和肉品质的影响[J/OL].动物营养学报, 2021, 1-8.(2021-10-21).http://kns.cnki.net/kcms/detail/11.5461.s.20211020.1056.050.html.WANG B, WANG Q Z, GUO Z Q, et al.Effects of wheat bran replacement by tea leaf residue on growth performance, slaughter performance and meat quality of meat rabbits[J/OL].Chinese Journal of Animal Nutrition, 2021, 1-8.(2021-10-21).http://kns.cnki.net/kcms/detail/11.5461.s.20211020.1056.050.html.(in Chinese) |
[90] | LIU Y H, LI Y Y, FENG X C, et al.Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism, meat quality, and the amino acid and fatty acid composition of Peking ducks[J].Poult Sci, 2018, 97(9):3218-3229. |
[91] | HUANG Z, MU C, CHEN Y, et al.Effects of dietary probiotic supplementation on LXRα and CYP7α1 gene expression, liver enzyme activities and fat metabolism in ducks[J].Brit Poult Sci, 2015, 56(2):218-224. |
[92] | LI X F, YANG X Z, TAO Y, et al.Effects of probiotics on growth performance and blood biochemical indexes of cherry valley ducks[J].Agric Sci Technol, 2015, 16(8):1732-1734, 1740. |
[93] | 孔令勇, 盛祖勋, 杨雪林, 等.微生态制剂对樱桃谷肉鸭生长性能、屠宰性能及免疫器官发育的影响[J].动物营养学报, 2012, 24(8):1577-1582.KONG L Y, SHENG Z X, YANG X L, et al.Effects of microecological agent on growth performance, slaughter performance and development of immune organs of cherry valley ducks[J].Chinese Journal of Animal Nutrition, 2012, 24(8):1577-1582.(in Chinese) |
[94] | 杜 瑞, 王柏辉, 罗玉龙, 等.益生菌调控胃肠道菌群改善肉品质的研究进展[J].微生物学通报, 2019, 46(9):2378-2385.DU R, WANG B H, LUO Y L, et al.Advance in studying the effect of probiotics on gastrointestinal tract microorganism to improve meat quality[J].Microbiology China, 2019, 46(9):2378-2385.(in Chinese) |
[95] | 李 菊.肉仔鸡不同菌群状态对肠道化学成分及肉品质的影响[D].北京:中国农业大学, 2006.LI J.The effect of different intestinal microflora state of broiler chickens on chemical components and meat quality[D].Beijing:China Agricultural University, 2006.(in Chinese) |
[96] | WANG H S, NI X Q, QING X D, et al.Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers[J].Front Microbiol, 2017, 8:1073. |
[97] | 郭秀兰.猪肠道硬壁菌门和拟杆菌门数量的检测及其相对丰度与脂肪沉积的相关性研究[D].雅安:四川农业大学, 2009.GUO X L.Detection of firmicutes and bacteroidetes in the pig gut and the correlation between their abundance and fat deposit[D].Ya'an:Sichuan Agricultural University, 2009.(in Chinese) |
[98] | HUANG W C, HSU Y J, HUANG C C, et al.Exercise training combined with Bifidobacterium longum OLP-01 supplementation improves exercise physiological adaption and performance[J].Nutrients, 2020, 12(4):1145. |
[99] | HUANG W C, PAN C H, WEI C C, et al.Lactobacillus plantarum PS128 improves physiological adaptation and performance in triathletes through gut microbiota modulation[J].Nutrients, 2020, 12(8):2315. |
[100] | CLARKE S F, MURPHY E F, O'SULLIVAN O, et al.Exercise and associated dietary extremes impact on gut microbial diversity[J].Gut, 2014, 63(12):1913-1920. |
[101] | MACH N, FUSTER-BOTELLA D.Endurance exercise and gut microbiota:a review[J].J Sport Health Sci, 2017, 6(2):179-197. |
[102] | SHIN H E, KWAK S E, LEE J H, et al.Exercise, the gut microbiome, and frailty[J].Ann Geriatr Med Res, 2019, 23(3):105-114. |
[103] | CAMPBELL S C, WISNIEWSKI P J, NOJI M, et al.The effect of diet and exercise on intestinal integrity and microbial diversity in mice[J].PLoS One, 2016, 11(3):e0150502. |
[104] | MATSUMOTO M, INOUE R, TSUKAHARA T, et al.Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum[J].Biosci, Biotechnol, Biochem, 2008, 72(2):572-576. |
[105] | BARTON W, PENNEY N C, CRONIN O, et al.The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J].Gut, 2018, 67(4):625-633. |
[106] | ALLEN J M, MAILING L J, NIEMIRO G M, et al.Exercise alters gut microbiota composition and function in lean and obese humans[J].Med Sci Sports Exerc, 2018, 50(4):747-757. |
[107] | VARIAN B J, GOURESHETTI S, POUTAHIDIS T, et al.Beneficial bacteria inhibit cachexia[J].Oncotarget, 2016, 7(11):11803-11816. |
[108] | QUEIPO-ORTUÑO M I, SEOANE L M, MURRI M, et al.Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels[J].PLoS One, 2013, 8(5):e65465. |
[109] | LIU S Q, YANG D, YU L, et al.Effects of lycopene on skeletal muscle-fiber type and high-fat diet-induced oxidative stress[J].J Nutr Biochem, 2021, 87:108523. |
[110] | 刘 洋, 李蛟龙, 张 林, 等.胍基乙酸和甜菜碱对育肥猪肌肉能量代谢和肉品质的影响[J].畜牧兽医学报, 2015, 46(9):1557-1563.LIU Y, LI J L, ZHANG L, et al.Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on muscle energy metabolism, meat quality in finishing pigs[J].Acta Veterinaria et Zootechnica Sinica, 2015, 46(9):1557-1563.(in Chinese) |
[111] | 任国栋, 郝小燕, 刘 森, 等.胍基乙酸和甜菜碱对公羔生长发育、屠宰性能和肉品质的影响[J].动物营养学报, 2021, 33(12):6899-6909.REN G D, HAO X Y, LIU S, et al.Effects of guanidineacetic acid and betaine on growth and development, slaughter performance and meat quality of lambs[J].Chinese Journal of Animal Nutrition, 2021, 33(12):6899-6909.(in Chinese) |
[112] | WANG X Y, XU M X, PENG Y, et al.Triptolide enhances lipolysis of adipocytes by enhancing ATGL transcription via upregulation of p53[J].Phytother Res, 2020, 34(12):3298-3310. |
[1] | 龙唐晖, 周江汇, 詹彦波, 张健, 赵向辉, 李艳娇, 欧阳克蕙, 邱清华. 反刍动物瘤胃微生物LuxS/AI-2群体感应研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1893-1903. |
[2] | 龙唐晖, 詹彦波, 廖观香, 陈新锋, 张健, 李艳娇, 欧阳克蕙, 邱清华. 饲粮添加赖氨酸对肉牛粪便发酵参数和微生物菌群结构的影响[J]. 畜牧兽医学报, 2024, 55(5): 2042-2049. |
[3] | 刘佳惠, 吴开开, 王磊, 张康, 韩松伟, 陈富斌, 徐国伟, 郭志廷, 古雪艳, 张景艳, 李建喜. 黄芪多糖、皂苷及益生菌复合物对感染大肠杆菌肉鸡肠道的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2241-2252. |
[4] | 刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55(4): 1592-1604. |
[5] | 张帅, 陈奎蓉, 许迪, 江山, 王梦影, 张坤, 徐玉培, 雷国凤, 张志程, 郭猛, 赵云翔, 兰干球, 梁晶. 基于16S rRNA测序分析高低饲料转化率猪粪便微生物的组成差异[J]. 畜牧兽医学报, 2024, 55(4): 1605-1614. |
[6] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[7] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[8] | 范定坤, 张吉贤, 付域泽, 马涛, 毕研亮, 张乃锋. 反刍动物瘤胃微生物培养组学研究进展[J]. 畜牧兽医学报, 2024, 55(1): 51-58. |
[9] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[10] | 卢建, 张欣, 江栋材, 马猛, 王强, 王星果, 李永峰, 郭军, 窦套存, 胡玉萍, 李尚民, 邵丹, 曲亮. 甘氨酸锰对产蛋后期蛋鸡产蛋性能和肠道微生物的影响[J]. 畜牧兽医学报, 2024, 55(1): 218-231. |
[11] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[12] | 马友记, 陈鹏飞, 马青, 吴怡. 不同运动量对滩羊瘤胃菌群多样性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3393-3405. |
[13] | 张颖, 金华, 韩杨, 眭丹, 肖鑫, 郝秀静, 李敏. 患呼吸道疾病羊鼻腔及生活环境微生物多样性分析[J]. 畜牧兽医学报, 2023, 54(8): 3455-3465. |
[14] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[15] | 何琪富, 高峰, 吴盛辉, 张涌, 权富生. 参与调节哺乳动物精子运动的离子通道研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2708-2722. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||