畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (7): 2074-2082.doi: 10.11843/j.issn.0366-6964.2022.07.005
赵旭阳1, 靳家鑫1, 路闻龙1, 张帅1, 黄丽2, 张改平1, 孙爱军1*, 庄国庆1*
收稿日期:
2021-11-08
出版日期:
2022-07-23
发布日期:
2022-07-23
通讯作者:
孙爱军,主要从事动物分子病毒学研究,E-mail:sunaijun225@163.com;庄国庆,主要从事动物分子免疫学研究,E-mail:gqzhuang2008@163.com
作者简介:
赵旭阳(1994-),男,河南洛阳人,博士生,主要从事非洲猪瘟病毒免疫机制研究,E-mail:zhaoxuyang17@163.com
基金资助:
ZHAO Xuyang1, JIN Jiaxin1, LU Wenlong1, ZHANG Shuai1, HUANG Li2, ZHANG Gaiping1, SUN Aijun1*, ZHUANG Guoqing1*
Received:
2021-11-08
Online:
2022-07-23
Published:
2022-07-23
摘要: 非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染猪引起的一种急性、烈性、高度接触性传染病,至今没有研发出安全有效的疫苗,一旦暴发会造成重大经济损失。ASFV在和宿主长期作用过程中,通过抑制干扰素和炎症反应,调节凋亡、自噬及细胞免疫等多种途径逃逸机体免疫反应促进自身复制,但具体的机制仍不完全清楚。ASFV复杂的免疫逃逸机制可能是阻碍有效疫苗研发的关键因素之一。借助生物信息学技术对ASFV的基因组和蛋白质组深入分析,筛选病毒的免疫调控关键基因和保护性抗原表位,将在ASFV免疫逃逸分子机制的研究与疫苗研发中发挥重要作用。本文主要对ASFV感染引起的免疫应答反应及可能的免疫逃逸机制研究进行概述,以期为ASF疫苗研制及综合防控提供思路。
中图分类号:
赵旭阳, 靳家鑫, 路闻龙, 张帅, 黄丽, 张改平, 孙爱军, 庄国庆. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53(7): 2074-2082.
ZHAO Xuyang, JIN Jiaxin, LU Wenlong, ZHANG Shuai, HUANG Li, ZHANG Gaiping, SUN Aijun, ZHUANG Guoqing. Advances in the Molecular Mechanism of Immune Escape of African Swine Fever Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082.
[1] | SALGUERO F J. Comparative pathology and pathogenesis of African swine fever infection in swine[J]. Front Vet Sci, 2020, 7:282. |
[2] | 孙爱军,王芮,朱潇静,等.非洲猪瘟相关检测及猪场生物安全防控研究进展[J].中国兽医学报, 2021, 41(5):1023-1030.SUN A J, WANG R, ZHU X J, et al. Review on African swine fever-associated detection and pig farm biosecurity control measurement development[J]. Chinese Journal of Veterinary Science, 2021, 41(5):1023-1030.(in Chinese) |
[3] | GAUDREAULT N N, MADDEN D W, WILSON W C, et al. African swine fever virus:an emerging DNA arbovirus[J]. Front Vet Sci, 2020, 7:215. |
[4] | ALEJO A, MATAMOROS T, GUERRA M, et al. A proteomic atlas of the African swine fever virus particle[J]. J Virol, 2018, 92(23):e01293-18. |
[5] | SUN T W, YANG C L, KAO T T, et al. Host range and coding potential of eukaryotic giant viruses[J]. Viruses, 2020, 12(11):1337. |
[6] | OZGEN A, MURATOGLU H, DEMIRBAG Z, et al. Construction and characterization of a recombinant invertebrate iridovirus[J]. Virus Res, 2014, 189:286-292. |
[7] | DIXON L K, SÁNCHEZ-CORDÓN P J, GALINDO I, et al. Investigations of pro-and anti-apoptotic factors affecting African swine fever virus replication and pathogenesis[J]. Viruses, 2017, 9(9):241. |
[8] | LAWLER C, BRADY G. Poxviral targeting of interferon regulatory factor activation[J]. Viruses, 2020, 12(10):1191. |
[9] | DE PAIVA E ALMEIDA S C, DE OLIVEIRA V L, PARKHOUSE R M E. Impact on antibody responses of B-cell-restricted transgenic expression of a viral gene inhibiting activation of NF-κB and NFAT[J]. Arch Virol, 2015, 160(6):1477-1488. |
[10] | ALONSO C, GALINDO I, CUESTA-GEIJO M A, et al. African swine fever virus-cell interactions:from virus entry to cell survival[J]. Virus Res, 2013, 173(1):42-57. |
[11] | FRANZONI G, GRAHAM S P, GIUDICI S D, et al. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets[J]. Vet Microbiol, 2017, 198:88-98. |
[12] | SALAS M L, ANDRÉS G. African swine fever virus morphogenesis[J]. Virus Res, 2013, 173(1):29-41. |
[13] | LI D, YANG W P, LI L L, et al. African swine fever virus MGF-505-7R negatively regulates cGAS-STING-mediated signaling pathway[J]. J Immunol, 2021, 206(8):1844-1857. |
[14] | LI J N, SONG J, KANG L, et al. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production[J]. PLoS Pathog, 2021, 17(7):e1009733. |
[15] | BARRADO-GIL L, DEL PUERTO A, GALINDO I, et al. African swine fever virus ubiquitin-conjugating enzyme is an immunomodulator targeting NF-κB activation[J]. Viruses, 2021, 13(6):1160. |
[16] | LI D, ZHANG J, YANG W P, et al. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1-and JAK2-mediated signaling[J]. J Biol Chem, 2021, 297(5):101190. |
[17] | DE OLIVEIRA V L, ALMEIDA S C P, SOARES H R, et al. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)[J]. Arch Virol, 2011, 156(4):597-609. |
[18] | ZHU J J, RAMANATHAN P, BISHOP E A, et al. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages[J]. PLoS One, 2019, 14(11):e0223955. |
[19] | ESCRIBANO J M, GALINDO I, ALONSO C. Antibody-mediated neutralization of African swine fever virus:myths and facts[J]. Virus Res, 2013, 173(1):101-109. |
[20] | OURA C A L, DENYER M S, TAKAMATSU H, et al. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus[J]. J Gen Virol, 2005, 86(Pt 9):2445-2450. |
[21] | CHEN X X, YANG J F, JI Y H, et al. Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice[J]. Virol Sin, 2016, 31(2):150-159. |
[22] | 王西西,陈青,陈鸿军,等.非洲猪瘟病毒免疫逃逸相关蛋白研究进展[J].病毒学报, 2018, 34(6):929-935.WANG X X, CHEN Q, CHEN H J, et al. Research progress on immune evasion proteins of African swine fever virus[J]. Chinese Journal of Virology, 2018, 34(6):929-935.(in Chinese) |
[23] | RANDALL R E, GOODBOURN S. Interferons and viruses:an interplay between induction, signalling, antiviral responses and virus countermeasures[J]. J Gen Virol, 2008, 89(Pt 1):1-47. |
[24] | FAN W H, JIAO P T, ZHANG H, et al. Inhibition of African swine fever virus replication by porcine type I and type II interferons[J]. Front Microbiol, 2020, 11:1203. |
[25] | DIXON L K, ISLAM M, NASH R, et al. African swine fever virus evasion of host defences[J]. Virus Res, 2019, 266:25-33. |
[26] | AFONSO C L, PICCONE M E, ZAFFUTO K M, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response[J]. J Virol, 2004, 78(4):1858-1864. |
[27] | 申超超,李国丽,张大俊,等.非洲猪瘟病毒MGF 360-9L基因序列分析、蛋白结构预测及亚细胞定位[J].畜牧兽医学报, 2020, 51(6):1371-1381.SHEN C C, LI G L, ZHANG D J, et al. Gene sequence analysis, protein structure prediction and subcellular localization of MGF 360-9L from African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6):1371-1381.(in Chinese) |
[28] | CORREIA S, VENTURA S, PARKHOUSE R M. Identification and utility of innate immune system evasion mechanisms of ASFV[J]. Virus Res, 2013, 173(1):87-100. |
[29] | ZHUO Y S, GUO Z H, BA T T, et al. African swine fever virus MGF360-12L inhibits type I interferon production by blocking the interaction of importin α and NF-κB signaling pathway[J]. Virol Sin, 2021, 36(2):176-186. |
[30] | LIU X L, AO D, JIANG S, et al. African swine fever virus A528R inhibits TLR8 mediated NF-κB activity by targeting p65 activation and nuclear translocation[J]. Viruses, 2021, 13(10):2046. |
[31] | YANG K D, HUANG Q T, WANG R Y, et al. African swine fever virus MGF505-11R inhibits type I interferon production by negatively regulating the cGAS-STING-mediated signaling pathway[J]. Vet Microbiol, 2021, 263:109265. |
[32] | GAO Q, YANG Y L, QUAN W P, et al. The African swine fever virus with MGF360 and MGF505 deleted reduces the apoptosis of porcine alveolar macrophages by inhibiting the NF-κB signaling pathway and interleukin-1β[J]. Vaccines (Basel), 2021, 9(11):1371. |
[33] | 谭星,庞晓燕,郝秀静,等.胞质DNA感受器cGAS的研究进展[J].中国免疫学杂志, 2021, 37(21):2569-2574, 2579.TAN X, PANG X Y, HAO X J, et al. Research progress in cytoplasmic DNA sensors cGAS[J]. Chinese Journal of Immunology, 2021, 37(21):2569-2574, 2579.(in Chinese) |
[34] | WANG X X, WU J, WU Y T, et al. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1[J]. Biochem Biophys Res Commun, 2018, 506(3):437-443. |
[35] | GARCÍA-BELMONTE R, PÉREZ-NU'ÑEZ D, PITTAU M, et al. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway[J]. J Virol, 2019, 93(12):e02298-18. |
[36] | LIU H S, ZHU Z X, FENG T, et al. African swine fever virus E120R protein inhibits interferon beta production by interacting with IRF3 to block its activation[J]. J Virol, 2021, 95(18):e0082421. |
[37] | MISKIN J E, ABRAMS C C, DIXON L K. African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT[J]. J Virol, 2000, 74(20):9412-9420. |
[38] | GRANJA A G, NOGAL M L, HURTADO C, et al. The viral protein A238L inhibits TNF-α expression through a CBP/p300 transcriptional coactivators pathway[J]. J Immunol, 2006, 176(1):451-462. |
[39] | GRANJA A G, PERKINS N D, REVILLA Y. Correction:A238L inhibits NF-ATc2, NF-κB, and c-Jun activation through a novel mechanism involving protein kinase C-θ-mediated up-regulation of the amino-terminal transactivation domain of p300[J]. J Immunol, 2015, 194(4):2032. |
[40] | GRIGORIU S, BOND R, COSSIO P, et al. The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin[J]. PLoS Biol, 2013, 11(2):e1001492. |
[41] | GRANJA A G, NOGAL M L, HURTADO C, et al. The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway[J]. J Biol Chem, 2004, 279(51):53736-53746. |
[42] | BORCA M V, O'DONNELL V, HOLINKA L G, et al. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1β[J]. Virus Res, 2018, 249:116-123. |
[43] | CARRASCOSA A L, BUSTOS M J, NOGAL M L, et al. Apoptosis induced in an early step of African swine fever virus entry into vero cells does not require virus replication[J]. Virology, 2002, 294(2):372-382. |
[44] | DANTHI P. Enter the kill zone:initiation of death signaling during virus entry[J]. Virology, 2011, 411(2):316-324. |
[45] | VALLEE I, TAIT S W G, POWELL P P. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis[J]. J Virol, 2001, 75(21):10372-10382. |
[46] | PORTUGAL R, LEITÃO A, MARTINS C. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence[J]. Arch Virol, 2009, 154(9):1441-1450. |
[47] | BANJARA S, CARIA S, DIXON L K, et al. Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis[J]. J Virol, 2017, 91(6):e02228-16. |
[48] | BARBER C, NETHERTON C, GOATLEY L, et al. Identification of residues within the African swine fever virus DP71L protein required for dephosphorylation of translation initiation factor eIF2α and inhibiting activation of pro-apoptotic CHOP[J]. Virology, 2017, 504:107-113. |
[49] | KOYAMA A H, ADACHI A, IRIE H. Physiological significance of apoptosis during animal virus infection[J]. Int Rev Immunol, 2003, 22(5-6):341-359. |
[50] | ORVEDAHL A, ALEXANDER D, TALLÓCZY Z, et al. HSV-1 ICP34. 5 confers neurovirulence by targeting the Beclin 1 autophagy protein[J]. Cell Host Microbe, 2007, 1(1):23-35. |
[51] | HERNAEZ B, CABEZAS M, MUNOZ-MORENO R, et al. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein[J]. Curr Mol Med, 2013, 13(2):305-316. |
[52] | CHEN S, ZHANG X H, NIE Y, et al. African swine fever virus protein E199L promotes cell autophagy through the interaction of PYCR2[J]. Virol Sin, 2021, 36(2):196-206. |
[53] | DREUX M, CHISARI F V. Viruses and the autophagy machinery[J]. Cell Cycle, 2010, 9(7):1295-1307. |
[54] | SHIMMON G L, HUI J Y K, WILEMAN T E, et al. Autophagy impairment by African swine fever virus[J]. J Gen Virol, 2021, 102(8):001637. |
[55] | RIVERA J, ABRAMS C, HERNAEZ B, et al. The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity[J]. J Virol, 2007, 81(6):2923-2929. |
[56] | LIU Q, HU W, ZHANG Y L, et al. Anti-viral immune response in the lung and thymus:Molecular characterization and expression analysis of immunoproteasome subunits LMP2, LMP7 and MECL-1 in pigs[J]. Biochem Biophys Res Commun, 2018, 502(4):472-478. |
[57] | HURTADO C, GRANJA A G, BUSTOS M J, et al. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression[J]. Virology, 2004, 326(1):160-170. |
[58] | HURTADO C, BUSTOS M J, GRANJA A G, et al. The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens[J]. Arch Virol, 2011, 156(2):219-234. |
[59] | JIA N, OU Y W, PEJSAK Z, et al. Roles of African swine fever virus structural proteins in viral infection[J]. J Vet Res, 2017, 61(2):135-143. |
[60] | CHAULAGAIN S, DELHON G A, KHATIWADA S, et al. African swine fever virus CD2v protein induces β-interferon expression and apoptosis in swine peripheral blood mononuclear cells[J]. Viruses, 2021, 13(8):1480. |
[61] | SUN W Q, ZHANG H, FAN W H, et al. Evaluation of cellular immunity with ASFV infection by swine leukocyte antigen (SLA)-peptide tetramers[J]. Viruses, 2021, 13(11):2264. |
[62] | CHEN W Y, ZHAO D M, HE X J, et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J]. Sci China Life Sci, 2020, 63(5):623-634. |
[63] | GALLARDO C, SOLER A, RODZE I, et al. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017[J]. Transbound Emerg Dis, 2019, 66(3):1399-1404. |
[64] | GAVIER-WIDÉN D, STÅHL K, DIXON L. No hasty solutions for African swine fever[J]. Science, 2020, 367(6478):622-624. |
[65] | YANG J N, TANG K C, CAO Z D, et al. Demand-driven spreading patterns of African swine fever in China[J]. Chaos, 2021, 31(6):061102. |
[66] | SÁNCHEZ E G, PÉREZ-NU'ÑEZ D, REVILLA Y. Development of vaccines against African swine fever virus[J]. Virus Res, 2019, 265:150-155. |
[1] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[2] | 闫文倩, 侯景, 杨金柯, 郝雨, 杨行, 史喜绢, 张大俊, 别鑫恬, 陈国辉, 陈玲玲, 何路, 赵美玉, 赵思越, 郑海学, 张克山. 非洲猪瘟病毒D1133 L蛋白单克隆抗体抑制其复制[J]. 畜牧兽医学报, 2024, 55(2): 854-859. |
[3] | 白昀, 谢青云, 欧阳伟, 甘源, 袁厅, 赵东明, 步志高, 邵国青, 冯志新. 基于黏膜sIgA抗体的非洲猪瘟病毒感染早期血清学检测方法的建立[J]. 畜牧兽医学报, 2024, 55(1): 300-310. |
[4] | 刘传霞, 王晓, 李雪雯, 鲍苗菲, 李婷婷, 陈欣, 翁长江, 郑君. 非洲猪瘟病毒pE120R蛋白单克隆抗体的制备[J]. 畜牧兽医学报, 2024, 55(1): 388-394. |
[5] | 王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138. |
[6] | 冯永智, 龚婷, 吴东东, 高琦, 郑晓宇, 张桂红, 孙彦阔. 影响非洲猪瘟病毒对培养细胞感染性的因素分析[J]. 畜牧兽医学报, 2023, 54(8): 3406-3414. |
[7] | 刘桃雪, 苏冰倩, 齐艳丽, 郭江涛, 刘忠虎, 褚贝贝, 王江, 曾磊. 非洲猪瘟病毒p30蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(8): 3415-3423. |
[8] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[9] | 王映, 朱家宏, 赵加凯, 纪品品, 陈旭, 张路, 刘宝元, 孙亚妮, 赵钦. 抗非洲猪瘟病毒NP419L蛋白纳米抗体的筛选鉴定及其在抗体检测中的初步应用[J]. 畜牧兽医学报, 2023, 54(6): 2509-2520. |
[10] | 刘文豪, 朱彦策, 张冬萱, 王智豪, 张超. 稳定表达非洲猪瘟病毒E165R蛋白PK 15细胞系的构建[J]. 畜牧兽医学报, 2023, 54(6): 2662-2666. |
[11] | 龙琴琴, 魏敏, 王雨婷, 文明, 庞峰. 羊口疮病毒与宿主的博弈:免疫应答与病毒免疫逃逸机制[J]. 畜牧兽医学报, 2023, 54(5): 1845-1853. |
[12] | 王国超, 赵亚茹, 张忠辉, 张玉龙, 白鸽, 耿抒贤, 樊洁, 杨吉飞, 关贵全, 殷宏, 罗建勋, 牛庆丽. 非洲猪瘟病毒RNA聚合酶亚基D205R基因生物信息学分析及多克隆抗体制备[J]. 畜牧兽医学报, 2023, 54(5): 2042-2049. |
[13] | 张婷, 冯涛, 杨金柯, 郝雨, 杨行, 张大俊, 史喜绢, 闫文倩, 陈玲玲, 刘湘涛, 郑海学, 张克山. 条件性敲除D1133L基因的重组非洲猪瘟病毒的构建及增殖特性[J]. 畜牧兽医学报, 2023, 54(2): 706-714. |
[14] | 张芳源, 杨大为, 仇德洋, 姜国骞, 李桂梅, 单虎. 非洲猪瘟病毒P30蛋白的表达及抗体液相芯片检测方法的建立[J]. 畜牧兽医学报, 2023, 54(10): 4300-4310. |
[15] | 谢青云, 易玮婕, 李嘉豪, 白昀, 谢星, 袁厅, 张越, 冯余凡, 赵东明, 步志高, 刘斐, 冯志新. 适合早期诊断的非洲猪瘟sIgA抗体量子点免疫层析检测方法建立[J]. 畜牧兽医学报, 2023, 54(10): 4311-4319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||