畜牧兽医学报 ›› 2021, Vol. 52 ›› Issue (7): 1769-1777.doi: 10.11843/j.issn.0366-6964.2021.07.001
张迎冰, 于芮峦, 乔培培, 杨莹, 张涌, 苏建民*
收稿日期:
2020-09-18
出版日期:
2021-07-23
发布日期:
2021-07-23
通讯作者:
苏建民,主要从事动物胚胎发育机制研究,E-mail:sujm@nwafu.edu.cn
作者简介:
张迎冰(1994-),男,河南息县人,硕士,主要从事动物胚胎发育机制研究,E-mail:zhangyb@nwafu.edu.cn
基金资助:
ZHANG Yingbing, YU Ruiluan, QIAO Peipei, YANG Ying, ZHANG Yong, SU Jianmin*
Received:
2020-09-18
Online:
2021-07-23
Published:
2021-07-23
摘要: 染色质组装因子1(chromatin assembly factor-1,CAF-1),是由p150、p60、p48三个亚单位组成的组蛋白伴侣。CAF-1主要功能是在DNA复制中与增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)相互作用,负责募集组蛋白H3、H4沉积在新合成的DNA上以促进核小体装配。越来越多的研究解析CAF-1复合体的结构及其生物学功能,并发现CAF-1在体细胞重编程过程中发挥重要作用。因此,本文重点介绍了CAF-1的结构、生物学功能和在体细胞重编程中的作用。
中图分类号:
张迎冰, 于芮峦, 乔培培, 杨莹, 张涌, 苏建民. CAF-1在体细胞重编程中的作用机制[J]. 畜牧兽医学报, 2021, 52(7): 1769-1777.
ZHANG Yingbing, YU Ruiluan, QIAO Peipei, YANG Ying, ZHANG Yong, SU Jianmin. The Mechanism of CAF-1 in Somatic Cell Reprogramming[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 1769-1777.
[1] | STILLMAN B.Chromatin assembly during SV40 DNA replication in vitro[J].Cell,1986,45(4):555-565. |
[2] | SMITH S,STILLMAN B.Purification and characterization of CAF-I,a human cell factor required for chromatin assembly during DNA replication in vitro[J].Cell,1989,58(1):15-25. |
[3] | UWADA J,TANAKA N,YAMAGUCHI Y,et al.The p150 subunit of CAF-1 causes association of SUMO2/3 with the DNA replication foci[J].Biochem Biophys Res Commun,2010,391(1):407-413. |
[4] | THIRU A,NIETLISPACH D,MOTT H R,et al.Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin[J].EMBO J,2004,23(3):489-499. |
[5] | MATTIROLI F,GU Y J,YADAV T,et al.DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1(CAF-1) drives tetrasome assembly in the wake of DNA replication[J].eLife,2017,6:e22799. |
[6] | ZHANG K,GAO Y,LI J J,et al.A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks[J].Nucleic Acids Res,2016,44(11):5083-5094. |
[7] | TANG Y,POUSTOVOITOV M V,ZHAO K H,et al.Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly[J].Nat Struct Mol Biol,2006,13(10):921-929. |
[8] | TYLER J K,COLLINS K A,PRASAD-SINHA J,et al.Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors[J].Mol Cell Biol,2001,21(19):6574-6584. |
[9] | ENGLISH C M,ADKINS M W,CARSON J J,et al.Structural basis for the histone chaperone activity of Asf1[J].Cell, 2006,127(3):495-508. |
[10] | TAGAMI H,RAY-GALLET D,ALMOUZNI G,et al.Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis[J].Cell,2004,116(1):51-61. |
[11] | VERREAULT A,KAUFMAN P D,KOBAYASHI R,et al.Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4[J].Cell,1996,87(1):95-104. |
[12] | TAUNTON J,HASSIG C A,SCHREIBER S L.A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p[J].Science,1996,272(5260):408-411. |
[13] | SONG J J,GARLICK J D,KINGSTON R E.Structural basis of histone H4 recognition by p55[J].Genes Dev,2008, 22(10):1313-1318. |
[14] | SAUER P V,GU Y J,LIU W H,et al.Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1[J].Nucleic Acids Res,2018,46(19):9907-9917. |
[15] | VOLK A,CRISPINO J D.The role of the chromatin assembly complex (CAF-1) and its p60 subunit (CHAF1b) in homeostasis and disease[J].Biochim Biophys Acta Gene Regulat Mech,2015,1849(8):979-986. |
[16] | LI Q,ZHOU H,WURTELE H,et al.Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly[J].Cell,2008,134(2):244-255. |
[17] | HUANG T H,FOWLER F,CHEN C C,et al.The histone chaperones ASF1 and CAF-1 promote MMS22L-TONSL-mediated Rad51 Loading onto ssDNA during homologous recombination in human cells[J].Mol Cell,2018,69(5):879-892.e5. |
[18] | TJEERTES J V,MILLER K M,JACKSON S P.Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells[J].EMBO J,2009,28(13):1878-1889. |
[19] | VEMPATI R K,JAYANI R S,NOTANI D,et al.p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals[J].J Biol Chem,2010,285(37):28553-28564. |
[20] | BURGESS R J,ZHOU H,HAN J H,et al.A role for Gcn5 in replication-coupled nucleosome assembly[J].Mol Cell,2010, 37(4):469-480. |
[21] | ALLIS C D,CHICOINE L G,RICHMAN R,et al.Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena[J].Proc Natl Acad Sci U S A,1985,82(23):8048-8052. |
[22] | SOBEL R E,COOK R G,ALLIS C D.Non-random acetylation of histone H4 by a cytoplasmic histone acetyltransferase as determined by novel methodology[J].J Biol Chem,1994,269(28):18576-18582. |
[23] | SOBEL R E,COOK R G,PERRY C A,et al.Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4[J].Proc Natl Acad Sci U S A,1995,92(4):1237-1241. |
[24] | PENG X D,FU H Y,YIN J J,et al.CHAF1B knockdown blocks migration in a hepatocellular carcinoma model[J].Oncol Rep,2018,40(1):405-413. |
[25] | DUAN Y,LIU T Z,LI S W,et al.CHAF1B promotes proliferation and reduces apoptosis in 95-D lung cancer cells and predicts a poor prognosis in non-small cell lung cancer[J].Oncol Rep,2019,41(4):2518-2528. |
[26] | YU Z S,LIU J Y,DENG W M,et al.Histone chaperone CAF-1:essential roles in multi-cellular organism development[J].Cell Mol Life Sci,2015,72(2):327-337. |
[27] | XU M,JIA Y L,LIU Z K,et al.Chromatin assembly factor 1,subunit A (P150) facilitates cell proliferation in human hepatocellular carcinoma[J].Onco Targets Ther,2016,9:4023-4035. |
[28] | VOLK A,LIANG K W,SURANENI P,et al.A CHAF1B-dependent molecular switch in hema-topoiesis and leukemia pathogenesis[J].Cancer cell,2018,34(5):707-723.e7. |
[29] | DI M P,WANG M,MIAO J J,et al.CHAF1B induces radioresistance by promoting DNA damage repair in nasopharyngeal carcinoma[J].Biomed Pharma-cother,2020,123:109748. |
[30] | BARBIERI E,DE PRETER K,CAPASSO M,et al.Histone chaperone CHAF1A inhibits differentiation and promotes aggressive neuroblastoma[J].Cancer Res,2014,74(3):765-774. |
[31] | CHELOUFI S,ELLING U,HOPFGARTNER B,et al.The histone chaperone CAF-1 safeguards somatic cell identity[J].Nature, 2015,528(7581):218-224. |
[32] | YOUNG T J,CUI Y,PFEFFER C,et al.CAF-1 and Rtt101p function within the replication-coupled chromatin assembly network to promote H4 K16ac,preventing ectopic silencing[J].PLoS Genet,2020,16(12):e1009226. |
[33] | HUANG H,YU Z S,ZHANG S Q,et al.Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability[J].J Cell Sci,2010,123(Pt 16):2853-2861. |
[34] | ROELENS B,CLÉMOT M,LEROUX-COYAU M,et al.Maintenance of heterochromatin by the large subunit of the CAF-1 replication-coupled histone chaperone requires its interaction with HP1a through a conserved motif[J].Genetics,2017,205(1):125-137. |
[35] | YANG B X,EL FARRAN C A,GUO H C,et al.Systematic identification of factors for provirus silencing in embryonic stem cells[J].Cell,2015,163(1):230-245. |
[36] | NG C, AICHINGER M, NGUYEN T, et al.The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain Cd4 silencing in cytotoxic T cells[J].Genes Dev,2019,33(11-12):669-683. |
[37] | HATANAKA Y,INOUE K,OIKAWA M,et al.Histone chaperone CAF-1 mediates repressive histone modifications to protect preimplantation mouse embryos from endogenous retrotransposons[J].Proc Natl Acad Sci U S A,2015,112(47):14641-14646. |
[38] | JIANG D H,BERGER F.DNA replication-coupled histone modification maintains Polycomb gene silencing in plants[J]. Science, 2017,357(6356):1146-1149. |
[39] | CHENG L,ZHANG X,WANG Y,et al.Chromatin Assembly Factor 1(CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit[J].Nucleic Acids Res,2019,47(21):11114-11131. |
[40] | CHELOUFI S,HOCHEDLINGER K.Emerging roles of the histone chaperone CAF-1 in cellular plasticity[J].Curr Opin Genet Dev,2017,46:83-94. |
[41] | ZHANG L,YU M Y,XU H Y,et al.RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos[J].Int J Biol Macromol,2020,150:492-500. |
[42] | AN Q L,PENG W,CHENG Y Y,et al.Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos[J].J Cell Physiol,2019,234(10):17370-17381. |
[43] | ZHOU C,WANG Y Z,ZHANG J C,et al.H3K27 me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency[J].FASEB J,2019,33(3):4638-4652. |
[44] | 梁素丽,李向臣,靳亚平,等.蛋白酶抑制剂MG-132对牛核移植重构胚重编程的影响[J].畜牧兽医学报, 2010,41(12):1536-1542.LIANG S L,LI X C,JIN Y P,et al.Effects of protease inhibitor MG-132 on nuclear remodeling of bovine nuclear transfer reconstructed embryos[J].Acta Veterinaria et Zootechnica Sinica,2010,41(12):1536-1542. (in Chinese) |
[45] | MATOBA S,LIU Y T,LU F L,et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J].Cell,2014,159(4):884-895. |
[46] | ISHIUCHI T,ABE S,INOUE K,et al.Reprogramming of the histone H3.3 landscape in the early mouse embryo[J].Nat Struct Mol Biol,2021,28(1):38-49. |
[47] | ISHIUCHI T,ENRIQUEZ-GASCA R,MIZUTANI E,et al.Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly[J].Nat Struct Mol Biol,2015,22(9):662-671. |
[48] | CHUNG Y G,MATOBA S,LIU Y T,et al.Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells[J].Cell Stem Cell,2015,17(6):758-766. |
[49] | SAMPAIO R V,SANGALLI J R,DE BEM T H C,et al.Catalytic inhibition of H3K9 me2 writers disturbs epigenetic marks during bovine nuclear reprogram-ming[J].Sci Rep,2020,10(1):11493. |
[50] | PEASTON A E,EVSIKOV A V,GRABER J H,et al.Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos[J].Dev Cell,2004,7(4):597-606. |
[51] | EVSIKOV A V,DE VRIES W N,PEASTON A E,et al.Systems biology of the 2-cell mouse embryo[J].Cytogenet Genome Res,2004,105(2-4):240-250. |
[52] | PROBST A V,OKAMOTO I,CASANOVA M,et al.A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development[J].Dev Cell,2010,19(4):625-638. |
[53] | GOMES A P,ILTER D,LOW V,et al.Dynamic incorporation of histone h3 variants into chromatin is essential for acquisition of aggressive traits and metastatic colonization[J].Cancer cell,2019,36(4):402-417.e13. |
[54] | WANG Y L,LI Y H,LUAN D J,et al.Dynamic replacement of H3.3 affects nuclear reprogramming in early bovine SCNT embryos[J].Theriogenology,2020,154:43-52. |
[55] | YAN H Y,XIANG X F,CHEN Q F,et al.HP1 cooperates with CAF-1 to compact heterochromatic transgene repeats in mammalian cells[J].Sci Rep,2018,8(1):14141. |
[56] | FILIPESCU D,SZENKER E,ALMOUZNI G.Developmental roles of histone H3 variants and their chaperones[J].Trends Genet,2013,29(11):630-640. |
[57] | HAKE S B,ALLIS C D.Histone H3 variants and their potential role in indexing mammalian genomes:the "H3 barcode hypothesis"[J].Proc Natl Acad Sci U S A,2006,103(17):6428-6435. |
[58] | LIU X,WANG Y Z,GAO Y P,et al.H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming[J].Development,2018,145(4):dev158261. |
[59] | AKIYAMA T,SUZUKI O,MATSUDA J,et al.Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos[J].PLoS Genet,2011,7(10):e1002279. |
[60] | RAY-GALLET D,WOOLFE A,VASSIAS I,et al.Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity[J].Mol Cell,2011,44(6):928-941. |
[61] | CHELOUFI S,ELLING U,HOPFGARTNER B,et al.The histone chaperone CAF-1 safeguards somatic cell identity[J].Nature,2015,528(7581):218-224. |
[62] | SERRA-CARDONA A,ZHANG Z G.Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity[J].Trends Biochem Sci,2018,43(2):136-148. |
[1] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[2] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[3] | 龙唐晖, 詹彦波, 廖观香, 陈新锋, 张健, 李艳娇, 欧阳克蕙, 邱清华. 饲粮添加赖氨酸对肉牛粪便发酵参数和微生物菌群结构的影响[J]. 畜牧兽医学报, 2024, 55(5): 2042-2049. |
[4] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[5] | 牛晓雨, 邢媛媛, 李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(4): 1467-1477. |
[6] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
[7] | 刘强, 牛小霞, 方敏, 刘艳玲, 高辉, 陈吉祥, 加华才让, 张思浓, 李勇. 牛冠状病毒刺突蛋白研究进展[J]. 畜牧兽医学报, 2024, 55(3): 944-956. |
[8] | 李艺璇, 牛静轶, 李港, 万超, 方仁东, 叶超. 伪狂犬病病毒编码的内膜蛋白生物学功能研究进展[J]. 畜牧兽医学报, 2024, 55(3): 957-970. |
[9] | 高远集, 刘畅, 陈淼, 陈松彪, 张俊峰, 李静, 贾艳艳, 廖成水, 郭荣显, 丁轲, 余祖华, 尚珂. 细菌外膜囊泡结构、分泌特性及致病机制[J]. 畜牧兽医学报, 2024, 55(3): 971-983. |
[10] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[11] | 曹晋康, 张纯, 王佳瑶, 李晓彤, 王鹏宇, 方颖妍, 张昱, 丁宁, 姜力. 中国荷斯坦公牛不同耐冻性精子的蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1052-1061. |
[12] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[13] | 陈姝宇, 朱雪蛟, 周金柱, 陶然, 张雪寒, 索朗斯珠, 贡嘎, 李彬. 鸟苷酸结合蛋白GBP1和GBP2抑制猪轮状病毒体外复制[J]. 畜牧兽医学报, 2024, 55(1): 245-257. |
[14] | 李珂, 王宇龙, 李栋, 史新娥, 杨公社, 于太永. 畜禽泛基因组研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3595-3604. |
[15] | 王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||