畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (3): 957-970.doi: 10.11843/j.issn.0366-6964.2024.03.010
李艺璇, 牛静轶, 李港, 万超, 方仁东, 叶超*
收稿日期:
2023-06-07
出版日期:
2024-03-23
发布日期:
2024-03-27
通讯作者:
叶超,主要从事兽医病毒学和兽医免疫学相关研究,E-mail:yechao123@swu.edu.cn
作者简介:
李艺璇(1998-),女,河南洛阳人,硕士生,主要从事伪狂犬病病毒致病分子机制相关研究,E-mail:lyx03014525@163.com
基金资助:
LI Yixuan, NIU Jingyi, LI Gang, WAN Chao, FANG Rendong, YE Chao*
Received:
2023-06-07
Online:
2024-03-23
Published:
2024-03-27
摘要: 伪狂犬病病毒(pseudorabies virus, PRV)属于甲型疱疹病毒亚科,能够感染宿主神经系统并在神经元中建立潜伏感染,是威胁全球养猪业的重要病原体。与其他甲型疱疹病毒类似,PRV的病毒粒子存在一层富含蛋白质的内膜层,它通过将含有DNA的核衣壳与布满糖蛋白的囊膜层衔接起来构成病毒粒子的完整结构。研究表明,在PRV的感染周期中,内膜蛋白可以通过单独作用或与其他蛋白相互作用的方式,在维持病毒形态结构的稳定、促进病毒的复制和出核、参与病毒在细胞质中的二次包膜、以及对抗宿主免疫系统等方面发挥重要生物学功能。因此本文重点讨论了近年来PRV内膜蛋白生物学功能的相关研究进展,以期为伪狂犬病病毒的病原学研究以及抗病毒研究提供重要参考。
中图分类号:
李艺璇, 牛静轶, 李港, 万超, 方仁东, 叶超. 伪狂犬病病毒编码的内膜蛋白生物学功能研究进展[J]. 畜牧兽医学报, 2024, 55(3): 957-970.
LI Yixuan, NIU Jingyi, LI Gang, WAN Chao, FANG Rendong, YE Chao. Research Progress on the Biological Functions of Tegument Proteins Encoded by Pseudorabies Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 957-970.
[1] CHEN J, LI G, WAN C, et al. A comparison of pseudorabies virus latency to other α-herpesvirinae subfamily members[J]. Viruses, 2022, 14(7):1386. [2] ZHOU M M, WU X J, JIANG D D, et al. Characterization of a moderately pathogenic pseudorabies virus variant isolated in China, 2014[J]. Infect Genet Evol, 2019, 68:161-171. [3] NAUWYNCK H, GLORIEUX S, FAVOREEL H, et al. Cell biological and molecular characteristics of pseudorabies virus infections in cell cultures and in pigs with emphasis on the respiratory tract[J]. Vet Res, 2007, 38(2):229-241. [4] WANG Y B, QIAO S L, LI X W, et al. Molecular epidemiology of outbreak-associated pseudorabies virus (PRV) strains in central China[J]. Virus Genes, 2015, 50(3):401-409. [5] SMITH G A. Assembly and egress of an alphaherpesvirus clockwork[M]//OSTERRIEDER K. Cell Biology of Herpes Viruses. Cham:Springer, 2017:171-193. [6] METTENLEITER T C. Herpesvirus assembly and egress[J]. J Virol, 2002, 76(4):1537-1547. [7] GUO H T, SHEN S, WANG L L, et al. Role of tegument proteins in herpesvirus assembly and egress[J]. Protein Cell, 2010, 1(11):987-998. [8] POMERANZ L E, REYNOLDS A E, HENGARTNER C J. Molecular biology of pseudorabies virus:impact on neurovirology and veterinary medicine[J]. Microbiol Mol Biol Rev, 2005, 69(3):462-500. [9] OWEN D J, CRUMP C M, GRAHAM S C. Tegument assembly and secondary envelopment of alphaherpesviruses[J]. Viruses, 2015, 7(9):5084-5114. [10] DEL RIO T, DECOSTE C J, ENQUIST L W. Actin is a component of the compensation mechanism in pseudorabies virus virions lacking the major tegument protein VP22[J]. J Virol, 2005, 79(13):8614-8619. [11] WONG M L, CHEN C H. Evidence for the internal location of actin in the pseudorabies virion[J]. Virus Res, 1998, 56(2):191-197. [12] BRESNAHAN W A, SHENK T E. UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells[J]. Proc Natl Acad Sci U S A, 2000, 97(26):14506-14511. [13] YANG L J, WANG M S, CHENG A C, et al. Innate immune evasion of alphaherpesvirus tegument proteins[J]. Front Immunol, 2019, 10:2196. [14] COLLER K E, SMITH G A. Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus[J]. Traffic, 2008, 9(9):1458-1470. [15] KATO A, YAMAMOTO M, OHNO T, et al. Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31[J]. J Virol, 2006, 80(3):1476-1486. [16] CANO-MONREAL G L, WYLIE K M, CAO F, et al. Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins[J]. Virology, 2009, 392(1):137-147. [17] VAN CLEEMPUT J, KOYUNCU O O, LAVAL K, et al. CRISPR/Cas9-constructed pseudorabies virus mutants reveal the importance of UL13 in alphaherpesvirus escape from genome silencing[J]. J Virol, 2021, 95(6):e02286-20. [18] ZHAO N N, WANG F, KONG Z J, et al. Pseudorabies virus tegument protein UL13 suppresses RLR-mediated antiviral innate immunity through regulating receptor transcription[J]. Viruses, 2022, 14(7):1465. [19] CHEN X Y, SHAN T L, SUN D G, et al. Host Zinc-finger CCHC-type containing protein 3 inhibits pseudorabies virus proliferation by regulating type I interferon signaling[J]. Gene, 2022, 827:146480. [20] KONG Z J, YIN H Y, WANG F, et al. Pseudorabies virus tegument protein UL13 recruits RNF5 to inhibit STING-mediated antiviral immunity[J]. PLoS Pathog, 2022, 18(5):e1010544. [21] LV L, CAO M Z, BAI J, et al. PRV-encoded UL13 protein kinase acts as an antagonist of innate immunity by targeting IRF3-signaling pathways[J]. Vet Microbiol, 2020, 250:108860. [22] BO Z Y, MIAO Y R, XI R, et al. PRV UL13 inhibits cGAS-STING-mediated IFN-β production by phosphorylating IRF3[J]. Vet Res, 2020, 51(1):118. [23] MING X, BO Z Y, MIAO Y R, et al. Pseudorabies virus kinase UL13 phosphorylates H2AX to foster viral replication[J]. FASEB J, 2022, 36(3):e22221. [24] LV L, BAI J, GAO Y N, et al. Peroxiredoxin 1 interacts with TBK1/IKK ε and negatively regulates pseudorabies virus propagation by promoting innate immunity[J]. J Virol, 2021, 95(19):e0092321. [25] YAN K, LIU J, GUAN X, et al. The carboxyl terminus of tegument protein pUL21 contributes to pseudorabies virus neuroinvasion[J]. J Virol, 2019, 93(7):e02052-18. [26] CURANOVIC D, LYMAN M G, BOU-ABBOUD C, et al. Repair of the UL21 locus in pseudorabies virus Bartha enhances the kinetics of retrograde, transneuronal infection in vitro and in vivo[J]. J Virol, 2009, 83(3):1173-1183. [27] LE SAGE V, JUNG M, ALTER J D, et al. The herpes simplex virus 2 UL21 protein is essential for virus propagation[J]. J Virol, 2013, 87(10):5904-5915. [28] THOMAS E C M, BOSSERT M, BANFIELD B W. The herpes simplex virus tegument protein pUL21 is required for viral genome retention within capsids[J]. PLoS Pathog, 2022, 18(11):e1010969. [29] GAO J, FINNEN R L, SHERRY M R, et al. Differentiating the roles of UL16, UL21, and Us3 in the nuclear egress of herpes simplex virus capsids[J]. J Virol, 2020, 94(13):e00738-20. [30] KLUPP B G, BOTTCHER S, GRANZOW H, et al. Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus[J]. J Virol, 2005, 79(3):1510-1522. [31] HAN J, CHADHA P, STARKEY J L, et al. Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail[J]. Proc Natl Acad Sci U S A, 2012, 109(48):19798-19803. [32] MICHAEL K, KLUPP B G, KARGER A, et al. Efficient incorporation of tegument proteins pUL46, pUL49, and pUS3 into pseudorabies virus particles depends on the presence of pUL21[J]. J Virol, 2007, 81(2):1048-1051. [33] MA Z C, BAI J, JIANG C L, et al. Tegument protein UL21 of alpha-herpesvirus inhibits the innate immunity by triggering CGAS degradation through TOLLIP-mediated selective autophagy[J]. Autophagy, 2023, 19(5):1512-1532. [34] MOHL B S, BOTTCHER S, GRANZOW H, et al. Random transposon-mediated mutagenesis of the essential large tegument protein pUL36 of pseudorabies virus[J]. J Virol, 2010, 84(16):8153-8162. [35] MICHAEL K, BÖTTCHER S, KLUPP B G, et al. Pseudorabies virus particles lacking tegument proteins pUL11 or pUL16 incorporate less full-length pUL36 than wild-type virus, but specifically accumulate a pUL36 N-terminal fragment[J]. J Gen Virol, 2006, 87(Pt 12):3503-3507. [36] KLUPP B G, FUCHS W, GRANZOW H, et al. Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein[J]. J Virol, 2002, 76(6):3065-3071. [37] MOHNKE J, STARK I, FISCHER M, et al. pUL36 deubiquitinase activity augments both the initiation and the progression of lytic herpes simplex virus infection in IFN-primed cells[J]. J Virol, 2022, 96(22):e0096322. [38] BOTTCHER S, KLUPP B G, GRANZOW H, et al. Identification of a 709-amino-acid internal nonessential region within the essential conserved tegument protein (p)UL36 of pseudorabies virus[J]. J Virol, 2006, 80(19):9910-9915. [39] LEE J I H, LUXTON G W G, SMITH G A. Identification of an essential domain in the herpesvirus VP1/2 tegument protein:the carboxy terminus directs incorporation into capsid assemblons[J]. J Virol, 2006, 80(24):12086-12094. [40] BOTTCHER S, MARESCH C, GRANZOW H, et al. Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo[J]. J Virol, 2008, 82(12):6009-6016. [41] BOTTCHER S, GRANZOW H, MARESCH C, et al. Identification of functional domains within the essential large tegument protein pUL36 of pseudorabies virus[J]. J Virol, 2007, 81(24):13403-13411. [42] KLUPP B G, GRANZOW H, MUNDT E, et al. Pseudorabies virus UL37 gene product is involved in secondary envelopment[J]. J Virol, 2001, 75(19):8927-8936. [43] FUCHS W, KLUPP B G, GRANZOW H, et al. Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein[J]. J Virol, 2004, 78(21):11879-11889. [44] LUXTON G W G, HAVERLOCK S, COLLER K E, et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins[J]. Proc Natl Acad Sci U S A, 2005, 102(16):5832-5837. [45] ZHOU Z H, CHEN D H, JAKANA J, et al. Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions[J]. J Virol, 1999, 73(4):3210-3218. [46] CLARK C M, JAMBUNATHAN N, COLLANTES T M A, et al. Inactivation of the UL37 deamidase enhances virus replication and spread of the HSV-1(VC2) oncolytic vaccine strain and secretion of GM-CSF[J]. Viruses, 2023, 15(2):367. [47] KOENIGSBERG A L, HELDWEIN E E. The dynamic nature of the conserved tegument protein UL37 of herpesviruses[J]. J Biol Chem, 2018, 293(41):15827-15839. [48] KOENIGSBERG A L, HELDWEIN E E. Crystal structure of the N-terminal half of the traffic controller UL37 from herpes simplex virus 1[J]. J Virol, 2017, 91(20):e01244-17. [49] PITTS J D, KLABIS J, RICHARDS A L, et al. Crystal structure of the herpesvirus inner tegument protein UL37 supports its essential role in control of viral trafficking[J]. J Virol, 2014, 88(10):5462-5473. [50] RICHARDS A L, SOLLARS P J, PITTS J D, et al. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion[J]. PLoS Pathog, 2017, 13(12):e1006741. [51] GRANZOW H, KLUPP B G, METTENLEITER T C. Entry of pseudorabies virus:an immunogold-labeling study[J]. J Virol, 2005, 79(5):3200-3205. [52] GRANZOW H, KLUPP B G, FUCHS W, et al. Egress of alphaherpesviruses:comparative ultrastructural study[J]. J Virol, 2001, 75(8):3675-3684. [53] HENAFF D, RADTKE K, LIPPÉ R. Herpesviruses exploit several host compartments for envelopment[J]. Traffic, 2012, 13(11):1443-1449. [54] HAMBLETON S, GERSHON M D, GERSHON A A. The role of the trans-Golgi network in varicella zoster virus biology[J]. Cell Mol Life Sci, 2004, 61(24):3047-3056. [55] JAMBUNATHAN N, CHOULJENKO D, DESAI P, et al. Herpes simplex virus 1 protein UL37 interacts with viral glycoprotein gK and membrane protein UL20 and functions in cytoplasmic virion envelopment[J]. J Virol, 2014, 88(11):5927-5935. [56] FUCHS W, GRANZOW H, KLOPFLEISCH R, et al. The UL7 gene of pseudorabies virus encodes a nonessential structural protein which is involved in virion formation and egress[J]. J Virol, 2005, 79(17):11291-11299. [57] KLOPFLEISCH R, KLUPP B G, FUCHS W, et al. Influence of pseudorabies virus proteins on neuroinvasion and neurovirulence in mice[J]. J Virol, 2006, 80(11):5571-5576. [58] YANG L J, WANG M S, CHENG A C, et al. Features and functions of the conserved herpesvirus tegument protein UL11 and its binding partners[J]. Front Microbiol, 2022, 13:829754. [59] METRICK C M, KOENIGSBERG A L, HELDWEIN E E. Conserved outer tegument component UL11 from herpes simplex virus 1 is an intrinsically disordered, RNA-binding protein[J]. mBio, 2020, 11(3):e00810-20. [60] KOPP M, GRANZOW H, FUCHS W, et al. The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm[J]. J Virol, 2003, 77(9):5339-5351. [61] KOPP M, GRANZOW H, FUCHS W, et al. Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment[J]. J Virol, 2004, 78(6):3024-3034. [62] CUNNINGHAM C, DAVISON A J, MACLEAN A R, et al. Herpes simplex virus type 1 gene UL14:phenotype of a null mutant and identification of the encoded protein[J]. J Virol, 2000, 74(1):33-41. [63] 张 辉. 伪狂犬病毒间质蛋白UL14功能研究及TK-/gG-株感染性克隆构建[D]. 武汉:华中农业大学, 2007. ZHANG H. Study on the function of pseudorabies virus tugement protein UL14 and the construction of TK-/gG- strain infectious clone[D]. Wuhan:Huazhong Agricultural University, 2007. (in Chinese) [64] YAMAUCHI Y, KIRIYAMA K, KUBOTA N, et al. The UL14 tegument protein of herpes simplex virus type 1 is required for efficient nuclear transport of the alpha transinducing factor VP16 and viral capsids[J]. J Virol, 2008, 82(3):1094-1106. [65] YAMAUCHI Y, DAIKOKU T, GOSHIMA F, et al. Herpes simplex virus UL14 protein blocks apoptosis[J]. Microbiol Immunol, 2003, 47(9):685-689. [66] XU J J, CHENG X F, LIU Y T, et al. Pseudorabies virus UL16 protein influences the inhibition of LRPPRC for the viral proliferation[J]. Vet Microbiol, 2022, 265:109327. [67] XU J J, CHENG X F, WU J Q, et al. Pseudorabies virus pUL16 assists the nuclear import of VP26 through protein-protein interaction[J]. Vet Microbiol, 2021, 257:109080. [68] JÖNS A, METTENLEITER T C. Identification and characterization of pseudorabies virus dUTPase[J]. J Virol, 1996, 70(2):1242-1245. [69] JÖNS A, GERDTS V, LANGE E, et al. Attenuation of dUTPase-deficient pseudorabies virus for the natural host[J]. Vet Microbiol, 1997, 56(1-2):47-54. [70] ZHANG R, XU A T, QIN C, et al. Pseudorabies virus dUTPase UL50 induces lysosomal degradation of type I interferon receptor 1 and antagonizes the alpha interferon response[J]. J Virol, 2017, 91(21):e01148-17. [71] KLUPP B G, GRANZOW H, KLOPFLEISCH R, et al. Functional analysis of the pseudorabies virus UL51 protein[J]. J Virol, 2005, 79(6):3831-3840. [72] DAVISON A J. Evolution of the herpesviruses[J]. Vet Microbiol, 2002, 86(1-2):69-88. [73] DELVA J L, VAN WAESBERGHE C, VAN DEN BROECK W, et al. The attenuated pseudorabies virus vaccine strain bartha hyperactivates plasmacytoid dendritic cells by generating large amounts of cell-free virus in infected epithelial cells[J]. J Virol, 2022, 96(12):e0219921. [74] SUN L Q, TANG Y J, YAN K J, et al. Construction of a quadruple gene-deleted vaccine confers complete protective immunity against emerging PRV variant challenge in piglets[J]. Virol J, 2022, 19(1):19. [75] LYU C, WANG S W, SUN M X, et al. Deletion of pseudorabies virus US2 gene enhances viral titers in a porcine cerebral cortex primary culture system[J]. Virus Genes, 2018, 54(3):406-413. [76] CLASE A C, LYMAN M G, DEL RIO T, et al. The pseudorabies virus Us2 protein, a virion tegument component, is prenylated in infected cells[J]. J Virol, 2003, 77(22):12285-12298. [77] KANG M H, BANFIELD B W. Pseudorabies virus tegument protein Us2 recruits the mitogen-activated protein kinase extracellular-regulated kinase (ERK) to membranes through interaction with the ERK common docking domain[J]. J Virol, 2010, 84(17):8398-8408. [78] LYMAN M G, RANDALL J A, CALTON C M, et al. Localization of ERK/MAP kinase is regulated by the alphaherpesvirus tegument protein Us2[J]. J Virol, 2006, 80(14):7159-7168. [79] FAVOREEL H W, VAN MINNEBRUGGEN G, ADRIAENSEN D, et al. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread[J]. Proc Natl Acad Sci U S A, 2005, 102(25):8990-8995. [80] DERUELLE M, GEENEN K, NAUWYNCK H J, et al. A point mutation in the putative ATP binding site of the pseudorabies virus US3 protein kinase prevents Bad phosphorylation and cell survival following apoptosis induction[J]. Virus Res, 2007, 128(1-2):65-70. [81] ZHOU T, WANG M S, CHENG A C, et al. Regulation of alphaherpesvirus protein via post-translational phosphorylation[J]. Vet Res, 2022, 53(1):93. [82] JANSENS R J J, VERHAMME R, MIRZA A H, et al. Alphaherpesvirus US3 protein-mediated inhibition of the m6A mRNA methyltransferase complex[J]. Cell Rep, 2022, 40(3):111107. [83] SEHL J, PÖRTNER S, KLUPP B G, et al. Roles of the different isoforms of the pseudorabies virus protein kinase pUS3 in nuclear egress[J]. J Virol, 2020, 94(7):e02029-19. [84] JANSENS R J J, VAN DEN BROECK W, DE PELSMAEKER S, et al. Pseudorabies virus US3-induced tunneling nanotubes contain stabilized microtubules, interact with neighboring cells via cadherins, and allow intercellular molecular communication[J]. J Virol, 2017, 91(19):e00749-17. [85] JACOB T, VAN DEN BROEKE C, VAN TROYS M, et al. Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton[J]. J Virol, 2013, 87(7):4121-4126. [86] LAMOTE J A S, GLORIEUX S, NAUWYNCK H J, et al. The US3 protein of pseudorabies virus drives viral passage across the basement membrane in porcine respiratory mucosa explants[J]. J Virol, 2016, 90(23):10945-10950. [87] JACOB T, VAN DEN BROEKE C, VAN WAESBERGHE C, et al. Pseudorabies virus US3 triggers RhoA phosphorylation to reorganize the actin cytoskeleton[J]. J Gen Virol, 2015, 96(8):2328-2335. [88] ESTEVES A D, KOYUNCU O O, ENQUIST L W. A pseudorabies virus serine/threonine kinase, US3, promotes retrograde transport in axons via Akt/mToRC1[J]. J Virol, 2022, 96(5):e0175221. [89] GRAUWET K, VITALE M, DE PELSMAEKER S, et al. Pseudorabies virus US3 protein kinase protects infected cells from NK cell-mediated lysis via increased binding of the inhibitory NK cell receptor CD300a[J]. J Virol, 2016, 90(3):1522-1533. [90] CHANG C D, LIN P Y, LIAO M H, et al. Suppression of apoptosis by pseudorabies virus Us3 protein kinase through the activation of PI3-K/Akt and NF-κB pathways[J]. Res Vet Sci, 2013, 95(2):764-774. [91] CHULUUNBAATAR U, ROLLER R, FELDMAN M E, et al. Constitutive mTORC1 activation by a herpesvirus Akt surrogate stimulates mRNA translation and viral replication[J]. Genes Dev, 2010, 24(23):2627-2639. [92] XIE J Y, ZHANG X B, CHEN L, et al. Pseudorabies virus US3 protein inhibits IFN-β production by interacting with IRF3 to block its activation[J]. Front Microbiol, 2021, 12:761282. [93] SUN M X, HOU L L, TANG Y D, et al. Pseudorabies virus infection inhibits autophagy in permissive cells in vitro[J]. Sci Rep, 2017, 7:39964. [94] FERRARI M, GUALANDI G L, CORRADI A, et al. Experimental infection of pigs with a thymidine kinase negative strain of pseudorabies virus[J]. Comp Immunol Microbiol Infect Dis, 1998, 21(4):291-303. [95] QIN Y F, QIN S Y, HUANG X M, et al. Isolation and identification of two novel pseudorabies viruses with natural recombination or TK gene deletion in China[J]. Vet Microbiol, 2023, 280:109703. [96] TENSER R B, RESSEL S J, FRALISH F A, et al. The role of pseudorabies virus thymidine kinase expression in trigeminal ganglion infection[J]. J Gen Virol, 1983, 64(Pt 6):1369-1373. [97] TATAROV G. An apathogenic mutant of the Aujeszky virus induced by 5-iodo-2-deoxyuridine (IDU)[J]. Zentralbl Veterinarmed B, 1968, 15(8):847-853. [98] CONG X, LEI J L, XIA S L, et al. Pathogenicity and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant in susceptible animals[J]. Vet Microbiol, 2016, 182:170-177. [99] WANG J, CUI X, WANG X B, et al. Efficacy of the Bartha-K61 vaccine and a gE-/gI-/TK- prototype vaccine against variant porcine pseudorabies virus (vPRV) in piglets with sublethal challenge of vPRV[J]. Res Vet Sci, 2020, 128:16-23. [100] ZHAO Y, WANG L Q, ZHENG H H, et al. Construction and immunogenicity of a gE/gI/TK-deleted PRV based on porcine pseudorabies virus variant[J]. Mol Cell Probes, 2020, 53:101605. [101] ROMERO C H, MEADE P N, HOMER B L, et al. Potential sites of virus latency associated with indigenous pseudorabies viruses in feral swine[J]. J Wildl Dis, 2003, 39(3):567-575. [102] VOLZ D M, LAGER K M, MENGELING W L. Latency of a thymidine kinase-negative pseudorabies vaccine virus detected by the polymerase chain reaction[J]. Arch Virol, 1992, 122(3-4):341-348. [103] MENGELING W L. Virus reactivation in pigs latently infected with a thymidine kinase negative vaccine strain of pseudorabies virus[J]. Arch Virol, 1991, 120(1-2):57-70. [104] FERRARI M, METTENLEITER T C, ROMANELLI M G, et al. A comparative study of pseudorabies virus (PRV) strains with defects in thymidine kinase and glycoprotein genes[J]. J Comp Pathol, 2000, 123(2-3):152-163. [105] SMILEY J R, ELGADI M M, SAFFRAN H A. Herpes simplex virus vhs protein[J]. Methods Enzymol, 2001, 342:440-451. [106] SMILEY J R. Herpes simplex virus virion host shutoff protein:immune evasion mediated by a viral RNase?[J]. J Virol, 2004, 78(3):1063-1068. [107] LIU Y F, TSAI P Y, LIN F Y, et al. Roles of nucleic acid substrates and cofactors in the vhs protein activity of pseudorabies virus[J]. Vet Res, 2015, 46:141. [108] LIN H W, HSU W L, CHANG Y Y, et al. Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-α expression[J]. J Vet Med Sci, 2010, 72(9):1179-1187. [109] YE C, CHEN J, WANG T, et al. Generation and characterization of UL41 null pseudorabies virus variant in vitro and in vivo[J]. Virol J, 2018, 15(1):119. [110] KOPP M, KLUPP B G, GRANZOW H, et al. Identification and characterization of the pseudorabies virus tegument proteins UL46 and UL47:role for UL47 in virion morphogenesis in the cytoplasm[J]. J Virol, 2002, 76(17):8820-8833. [111] FUCHS W, GRANZOW H, METTENLEITER T C. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48, and UL49 genes is viable in cultured cells[J]. J Virol, 2003, 77(23):12891-12900. [112] XU J J, GAO F, WU J Q, et al. Characterization of nucleocytoplasmic shuttling of pseudorabies virus protein UL46[J]. Front Vet Sci, 2020, 7:484. [113] SCHULZ K S, LIU X Q, KLUPP B G, et al. Pseudorabies virus pUL46 induces activation of ERK1/2 and regulates herpesvirus-induced nuclear envelope breakdown[J]. J Virol, 2014, 88(11):6003-6011. [114] FUCHS W, GRANZOW H, KLUPP B G, et al. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions[J]. J Virol, 2002, 76(13):6729-6742. [115] HERR W. The herpes simplex virus VP16-induced complex:mechanisms of combinatorial transcriptional regulation[J]. Cold Spring Harb Symp Quant Biol, 1998, 63:599-608. [116] STERN S, TANAKA M, HERR W. The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16[J]. Nature, 1989, 341(6243):624-630. [117] SANTOS V C, OSTLER J B, HARRISON K S, et al. Slug, a stress-induced transcription factor, stimulates herpes simplex virus 1 replication and transactivates a cis-regulatory module within the VP16 promoter[J]. J Virol, 2023, 97(4):e0007323. [118] FUCHS W, KLUPP B G, GRANZOW H, et al. Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49[J]. J Virol, 2002, 76(16):8208-8217. [119] DEL RIO T, WERNER H C, ENQUIST L W. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents[J]. J Virol, 2002, 76(2):774-782. |
[1] | 张颖, 宋春莲, 张莹, 沈鸿, 舒相华, 杨洪贵. 伪狂犬病病毒感染小鼠基质金属蛋白酶-9介导紧密连接蛋白损伤血脑屏障的研究[J]. 畜牧兽医学报, 2024, 55(5): 2186-2194. |
[2] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
[3] | 刘强, 牛小霞, 方敏, 刘艳玲, 高辉, 陈吉祥, 加华才让, 张思浓, 李勇. 牛冠状病毒刺突蛋白研究进展[J]. 畜牧兽医学报, 2024, 55(3): 944-956. |
[4] | 郭艳丽, 李可强, 白少川, 王涛, 王德贺, 王麒, 李兰会. ALV-E的结构、活性调控以及对宿主功能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2683-2691. |
[5] | 陈宏建, 曹艳, 樊杰, 甘荣萱, 宋文博, 喻盛炜, 杨婷, 赵艳霞, 魏春燕, 谢锐, 华琳, 彭忠, 吴斌. 2020—2022年湖北省生猪屠宰场伪狂犬病病毒的分离鉴定及遗传进化分析[J]. 畜牧兽医学报, 2023, 54(7): 2972-2981. |
[6] | 袁生, 李安琪, 吕文珂, 羊露露, 周峰, 黄良宗, 白挨泉, 温峰, 黄淑坚, 郭锦玥. 一株猪伪狂犬病病毒的主要毒力相关基因的变异分析及其对家兔的致病性[J]. 畜牧兽医学报, 2023, 54(5): 2195-2199. |
[7] | 倪征, 叶伟成, 陈柳, 云涛, 华炯钢, 朱寅初, 张存. 1株伪狂犬病病毒的基因变异及其对小鼠的致病性分析[J]. 畜牧兽医学报, 2023, 54(4): 1766-1770. |
[8] | 何文峰, 李琛, 常洪涛, 李隆熙, 陈静, 杨国庆, 刘慧敏. 抑制伪狂犬病病毒复制的宿主蛋白的筛选与鉴定[J]. 畜牧兽医学报, 2023, 54(3): 1177-1186. |
[9] | 夏春秋, 万发春, 刘磊, 沈维军, 肖定福. 缬氨酸的生物学功能及其在畜禽日粮中的应用[J]. 畜牧兽医学报, 2023, 54(11): 4502-4513. |
[10] | 吴学敏, 陈如敬, 陈秋勇, 车勇良, 严山, 刘玉涛, 周伦江, 王隆柏. 伪狂犬病病毒变异株gC抗体间接ELISA检测方法的建立及初步应用[J]. 畜牧兽医学报, 2022, 53(6): 2029-2034. |
[11] | 李兆龙, 张惠芳, 丰志华, 方舟. 携带CRISPR/Cas9的重组腺联病毒对伪狂犬病病毒感染小鼠的治疗效应[J]. 畜牧兽医学报, 2022, 53(3): 834-846. |
[12] | 郭振华, 李翔, 翁茂洋, 金前跃, 郭军庆, 邢广旭, 张改平. 宿主膜联蛋白A2与伪狂犬病病毒US3蛋白互作及其对细胞凋亡的影响[J]. 畜牧兽医学报, 2022, 53(11): 3927-3935. |
[13] | 王家敏, 李自良, 马芳芳, 康碧静, 田玲, 李倬, 马忠仁, 乔自林. 生物反应器培养BHK-21悬浮细胞增殖伪狂犬病病毒工艺优化[J]. 畜牧兽医学报, 2022, 53(11): 3936-3947. |
[14] | 郑晓楠, 李婷婷, 王金磊, 郑文斌, 朱兴全. 弓形虫致密颗粒蛋白的生物学功能研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3345-3357. |
[15] | 李琛, 何文峰, 赵丽娜, 凡启, 杨国庆, 刘慧敏. PK-15细胞的ISG15基因敲除促进PRV的复制[J]. 畜牧兽医学报, 2022, 53(10): 3621-3630. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||