1 |
RAFALKO J M , KRUGLYAK K M , MCCLEARY-WHEELER A L , et al. Age at cancer diagnosis by breed, weight, sex, and cancer type in a cohort of more than 3, 000 dogs: Determining the optimal age to initiate cancer screening in canine patients[J]. PLoS One, 2023, 18 (2): e0280795.
doi: 10.1371/journal.pone.0280795
|
2 |
ROMANUCCI M , DE MARIA R , MORELLO E M , et al. Editorial: Canine osteosarcoma as a model in comparative oncology: Advances and perspective[J]. Front Vet Sci, 2023, 10, 1141666.
doi: 10.3389/fvets.2023.1141666
|
3 |
BECK J , REN L , HUANG S , et al. Canine and murine models of osteosarcoma[J]. Vet Pathol, 2022, 59 (3): 399- 414.
doi: 10.1177/03009858221083038
|
4 |
WILK S S , ZABIELSKA-KOCZYW S K A . Molecular mechanisms of canine osteosarcoma metastasis[J]. Int J Mol Sci, 2021, 22 (7): 3639.
doi: 10.3390/ijms22073639
|
5 |
SAMUELS S K , COOK M R , GREEN E , et al. Case report: Metastatic parosteal osteosarcoma in a dog[J]. Front Vet Sci, 2021, 8, 715908.
doi: 10.3389/fvets.2021.715908
|
6 |
BREHM A , WILSON-ROBLES H , MILLER T , et al. Feasibility and safety of whole lung irradiation in the treatment of canine appendicular osteosarcoma[J]. Vet Comp Oncol, 2022, 20 (1): 20- 28.
doi: 10.1111/vco.12702
|
7 |
WEINMAN M A , RAMSEY S A , LEEPER H J , et al. Exosomal proteomic signatures correlate with drug resistance and carboplatin treatment outcome in a spontaneous model of canine osteosarcoma[J]. Cancer Cell Int, 2021, 21 (1): 245.
doi: 10.1186/s12935-021-01943-7
|
8 |
JIA Z , ZHU X , ZHOU Y , et al. Polypeptides from traditional Chinese medicine: Comprehensive review of perspective towards cancer management[J]. Int J Biol Macromol, 2024, 260 (Pt 1): 129423.
|
9 |
YANG C , LI D , KO C N , et al. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy[J]. Front Immunol, 2023, 14, 1133050.
doi: 10.3389/fimmu.2023.1133050
|
10 |
WANG Y , ZHANG X , WANG Y , et al. Application of immune checkpoint targets in the anti-tumor novel drugs and traditional Chinese medicine development[J]. Acta Pharm Sin B, 2021, 11 (10): 2957- 2972.
doi: 10.1016/j.apsb.2021.03.004
|
11 |
高慧敏, 彭代银, 王雷, 等. 藤黄化学成分和药理作用的研究进展及其质量标志物(Q-Marker)预测分析[J]. 中草药, 2023, 54 (8): 2668- 2685.
|
|
GAO H M , PENG D Y , WANG L , et al. Research progress on chemical composition and pharmacological effects of gamboge and predictive analysis on quality marker[J]. Chinese Traditional and Herbal Drugs, 2023, 54 (8): 2668- 2685.
|
12 |
MI L , XING Z , ZHANG Y , et al. Unveiling gambogenic acid as a promising antitumor compound: A review[J]. Planta Med, 2024, 90 (5): 353- 367.
doi: 10.1055/a-2258-6663
|
13 |
LIU C , XU J , GUO C , et al. Gambogenic acid induces endoplasmic reticulum stress in colorectal cancer via the aurora A pathway[J]. Front Cell Dev Biol, 2021, 9, 736350.
doi: 10.3389/fcell.2021.736350
|
14 |
WANG M , TU Y , LIU C , et al. Gambogenic acid inhibits invasion and metastasis of melanoma through regulation of lncRNA MEG3[J]. Biol Pharm Bull, 2023, 46 (10): 1385- 1393.
doi: 10.1248/bpb.b23-00156
|
15 |
AN F , CHANG W , SONG J , et al. Reprogramming of glucose metabolism: Metabolic alterations in the progression of osteosarcoma[J]. J Bone Oncol, 2024, 44, 100521.
doi: 10.1016/j.jbo.2024.100521
|
16 |
FU J Y , HUANG S J , WANG B L , et al. Lysine acetyltransferase 6A maintains CD4(+) T cell response via epigenetic reprogramming of glucose metabolism in autoimmunity[J]. Cell Metab, 2024, 36 (3): 557- 574.
doi: 10.1016/j.cmet.2023.12.016
|
17 |
LIU J , CAO X . Glucose metabolism of TAMs in tumor chemoresistance and metastasis[J]. Trends Cell Biol, 2023, 33 (11): 967- 978.
doi: 10.1016/j.tcb.2023.03.008
|
18 |
DAUER P , LENGYEL E . New Roles for Glycogen in Tumor Progression[J]. Trends Cancer, 2019, 5 (7): 396- 399.
doi: 10.1016/j.trecan.2019.05.003
|
19 |
FAVARO E , BENSAAD K , CHONG M G , et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells[J]. Cell Metab, 2012, 16 (6): 751- 764.
doi: 10.1016/j.cmet.2012.10.017
|
20 |
LIU Q , LI J , ZHANG W , et al. Glycogen accumulation and phase separation drives liver tumor initiation[J]. Cell, 2021, 184 (22): 5559- 5576.
doi: 10.1016/j.cell.2021.10.001
|
21 |
YANG Y T , ENGLEBERG A I , YUZBASIYAN-GURKAN V . Establishment and Characterization of cell lines from canine metastatic osteosarcoma[J]. Cells, 2023, 13 (1): 25.
doi: 10.3390/cells13010025
|
22 |
CHEN X , ZHANG X , CAI H , et al. Targeting USP9x/SOX2 axis contributes to the anti-osteosarcoma effect of neogambogic acid[J]. Cancer Lett, 2020, 469, 277- 286.
doi: 10.1016/j.canlet.2019.10.015
|
23 |
WEISS M C , EULO V , VAN TINE B A . Truly man's best friend: Canine cancers drive drug repurposing in osteosarcoma[J]. Clin Cancer Res, 2022, 28 (4): 571- 572.
doi: 10.1158/1078-0432.CCR-21-3471
|
24 |
GIRI S , ALLEN K J H , PRABAHARAN C B , et al. Initial insights into the interaction of antibodies radiolabeled with lutetium-177 and actinium-225 with tumor microenvironment in experimental human and canine osteosarcoma[J]. Nucl Med Biol, 2024, 134-135, 108917.
doi: 10.1016/j.nucmedbio.2024.108917
|
25 |
MASON N J . Comparative immunology and immunotherapy of canine osteosarcoma[J]. Adv Exp Med Biol, 2020, 1258, 199- 221.
|
26 |
胥辉豪, 刘江渝, 李启卷, 等. 己糖激酶2在犬乳腺肿瘤中的表达及预后研究[J]. 畜牧兽医学报, 2023, 54 (3): 1310- 1324.
doi: 10.11843/j.issn.0366-6964.2023.03.041
|
|
XU H H , LIU J Y , LI Q J , et al. Expression and prognosis of Hexokinase 2 in canine mammary tumors[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (3): 1310- 1324.
doi: 10.11843/j.issn.0366-6964.2023.03.041
|
27 |
CHEN B , HONG Y , GUI R , et al. N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis[J]. Cell Death Dis, 2022, 13 (9): 804.
doi: 10.1038/s41419-022-05245-2
|
28 |
YANG E , WANG X , GONG Z , et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression[J]. Signal Transduct Target Ther, 2020, 5 (1): 242.
doi: 10.1038/s41392-020-00359-5
|
29 |
YOUNG L E A , CONROY L R , CLARKE H A , et al. In situ mass spectrometry imaging reveals heterogeneous glycogen stores in human normal and cancerous tissues[J]. EMBO Mol Med, 2022, 14 (11): e16029.
doi: 10.15252/emmm.202216029
|
30 |
REN L K , LU R S , FEI X B , et al. Unveiling the role of PYGB in pancreatic cancer: a novel diagnostic biomarker and gene therapy target[J]. J Cancer Res Clin Oncol, 2024, 150 (3): 127.
doi: 10.1007/s00432-024-05644-2
|
31 |
JIANG L , LIU S , DENG T , et al. Analysis of the expression, function and signaling of glycogen phosphorylase isoforms in hepatocellular carcinoma[J]. Oncol Lett, 2022, 24 (2): 244.
doi: 10.3892/ol.2022.13364
|
32 |
ZOIS C E , HENDRIKS A M , HAIDER S , et al. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation[J]. Cell Death Dis, 2022, 13 (6): 573.
doi: 10.1038/s41419-022-05005-2
|
33 |
JI Q , LI H , CAI Z , et al. PYGL-mediated glucose metabolism reprogramming promotes EMT phenotype and metastasis of pancreatic cancer[J]. Int J Biol Sci, 2023, 19 (6): 1894- 1909.
doi: 10.7150/ijbs.76756
|
34 |
CHEN Y F , ZHU J J , LI J , et al. O-GlcNAcylation increases PYGL activity by promoting phosphorylation[J]. Glycobiology, 2022, 32 (2): 101- 109.
doi: 10.1093/glycob/cwab114
|
35 |
ZHAO X , WANG C , ZHAO L , et al. HBV DNA polymerase regulates tumor cell glycogen to enhance the malignancy of HCC cells[J]. Hepatol Commun, 2024, 8 (3): e0387.
|
36 |
XU J , LIU X , LIU X , et al. Long noncoding RNA KCNMB2-AS1 promotes the development of esophageal cancer by modulating the miR-3194-3p/PYGL axis[J]. Bioengineered, 2021, 12 (1): 6687- 6702.
doi: 10.1080/21655979.2021.1973775
|