1 |
BERG F , GUSTAFSON U , ANDERSSON L . The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: A genetic explanation for poor thermoregulation in piglets[J]. PLoS Genet, 2006, 2 (8): e129.
doi: 10.1371/journal.pgen.0020129
|
2 |
陈华. 藏猪在青藏高原独特生态环境下的养殖适应性研究[J]. 畜牧业环境, 2023 (20): 99- 101.
|
|
CHEN H . Study on Tibetan pig breeding adaptability in Qinghai-Tibet Plateau's unique ecology[J]. Animal Industry and Environment, 2023 (20): 99- 101.
|
3 |
LIN J , CAO C , TAO C , et al. Cold adaptation in pigs depends on UCP3 in beige adipocytes[J]. J Mol Cell Biol, 2017, 9 (5): 364- 375.
doi: 10.1093/jmcb/mjx018
|
4 |
李倩文, 杨榛, 杨雅楠, 等. 冬夏两季环境温度对藏猪生理特征及相关基因表达的影响[J]. 中国畜牧兽医, 2021, 48 (3): 873- 881.
|
|
LI Q W , YANG Z , YANG Y N , et al. Effects of environmental temperature in winter and summer on physiological characteristics and related gene expression of Tibetan pigs[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (3): 873- 881.
|
5 |
STRAUB L G , SCHERER P E . Metabolic messengers: Adiponectin[J]. Nat Metab, 2019, 1 (3): 334- 339.
doi: 10.1038/s42255-019-0041-z
|
6 |
ACHARI A E , JAIN S K . Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction[J]. Int J Mol Sci, 2017, 18 (6): 1321.
doi: 10.3390/ijms18061321
|
7 |
OKADA-IWABU M , YAMAUCHI T , IWABU M , et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity[J]. Nature, 2013, 503 (7477): 493- 499.
doi: 10.1038/nature12656
|
8 |
IWABU M , OKADA-IWABU M , TANABE H , et al. AdipoR agonist increases insulin sensitivity and exercise endurance in AdipoR-humanized mice[J]. Commun Biol, 2021, 4 (1): 45.
doi: 10.1038/s42003-020-01579-9
|
9 |
ZHANG S , WU X , WANG J , et al. Adiponectin/AdiopR1 signaling prevents mitochondrial dysfunction and oxidative injury after traumatic brain injury in a SIRT3 dependent manner[J]. Redox Biol, 2022, 54, 102390.
doi: 10.1016/j.redox.2022.102390
|
10 |
SONG N , XU H , WU S , et al. Synergistic activation of AMPK by AdipoR1/2 agonist and inhibitor of EDPs-EDP interaction recover NAFLD through enhancing mitochondrial function in mice[J]. Acta Pharm Sin B, 2023, 13 (2): 542- 558.
doi: 10.1016/j.apsb.2022.10.003
|
11 |
XU H , ZHAO Q , SONG N , et al. AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis[J]. Nat Commun, 2020, 11 (1): 5807.
doi: 10.1038/s41467-020-19668-y
|
12 |
HAN Y , SUN Q , CHEN W , et al. New advances of adiponectin in regulating obesity and related metabolic syndromes[J]. J Pharm Anal, 2024, 14 (5): 100913.
doi: 10.1016/j.jpha.2023.12.003
|
13 |
HERZIG S , SHAW R J . Ampk: Guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19 (2): 121- 135.
doi: 10.1038/nrm.2017.95
|
14 |
REISMAN E G , HAWLEY J A , HOFFMAN N J . Exercise-regulated mitochondrial and nuclear signalling networks in skeletal muscle[J]. Sports Med, 2024, 54 (5): 1097- 1119.
doi: 10.1007/s40279-024-02007-2
|
15 |
STEINBERG G R , HARDIE D G . New insights into activation and function of the AMPK[J]. Nat Rev Mol Cell Biol, 2023, 24 (4): 255- 272.
doi: 10.1038/s41580-022-00547-x
|
16 |
WU G , BAUMEISTER R , HEIMBUCHER T . Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold[J]. Cells, 2023, 12 (10): 1353.
doi: 10.3390/cells12101353
|
17 |
IMBEAULT P , DéPAULT I , HAMAN F . Cold exposure increases adiponectin levels in men[J]. Metabolism, 2009, 58 (4): 552- 559.
doi: 10.1016/j.metabol.2008.11.017
|
18 |
MENGEL L A , SEIDL H , BRANDL B , et al. Gender differences in the response to short-term cold exposure in young adults[J]. J Clin Endocrinol Metab, 2020, 105 (5): dgaa110.
|
19 |
HUI X , GU P , ZHANG J , et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation[J]. Cell Metab, 2015, 22 (2): 279- 290.
doi: 10.1016/j.cmet.2015.06.004
|
20 |
唐妮, 王书瑶, 齐锦雯, 等. 脂联素调控脂质代谢的研究进展[J]. 畜牧兽医学报, 2018, 49 (12): 2550- 2557.
doi: 10.11843/j.issn.0366-6964.2018.12.003
|
|
TANG N , WANG S Y , QI J W , et al. Research progress on adiponectin regulating lipid metabolism[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (12): 2550- 2557.
doi: 10.11843/j.issn.0366-6964.2018.12.003
|
21 |
WANG Y , LIANG B , LAU W B , et al. Restoring diabetes-induced autophagic flux arrest in ischemic/reperfused heart by ADIPOR (adiponectin receptor) activation involves both AMPK-dependent and AMPK-independent signaling[J]. Autophagy, 2017, 13 (11): 1855- 1869.
doi: 10.1080/15548627.2017.1358848
|
22 |
BAUZÁ-THORBRVGGE M , VUJIČI Ć M , CHANCLÓN B , et al. Adiponectin stimulates Sca1+CD34--adipocyte precursor cells associated with hyperplastic expansion and beiging of brown and white adipose tissue[J]. Metabolism, 2024, 151, 155716.
doi: 10.1016/j.metabol.2023.155716
|
23 |
NGUYEN T M D . Adiponectin: Role in physiology and pathophysiology[J]. Int J Prev Med, 2020, 11, 136.
doi: 10.4103/ijpvm.IJPVM_193_20
|
24 |
GHADGE A A , KHAIRE A A , KUVALEKAR A A . Adiponectin: A potential therapeutic target for metabolic syndrome[J]. Cytokine Growth Factor Rev, 2018, 39, 151- 158.
doi: 10.1016/j.cytogfr.2018.01.004
|
25 |
KADOWAKI T , YAMAUCHI T , KUBOTA N , et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome[J]. J Clin Invest, 2006, 116 (7): 1784- 1792.
doi: 10.1172/JCI29126
|
26 |
ZHAO Y , SUN N , SONG X , et al. A novel small molecule AdipoR2 agonist ameliorates experimental hepatic steatosis in hamsters and mice[J]. Free Radic Biol Med, 2023, 203, 69- 85.
doi: 10.1016/j.freeradbiomed.2023.04.001
|
27 |
PAHLAVANI H A , LAHER I , WEISS K , et al. Physical exercise for a healthy pregnancy: The role of placentokines and exerkines[J]. J Physiol Sci, 2023, 73 (1): 30.
doi: 10.1186/s12576-023-00885-1
|
28 |
KHORAMIPOUR K , CHAMARI K , HEKMATIKAR A A , et al. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition[J]. Nutrients, 2021, 13 (4): 1180.
doi: 10.3390/nu13041180
|
29 |
CHEN S , LIU X , PENG C , et al. The phytochemical hyperforin triggers thermogenesis in adipose tissue via a Dlat-AMPK signaling axis to curb obesity[J]. Cell Metab, 2021, 33 (3): 565- 580.e7.
doi: 10.1016/j.cmet.2021.02.007
|
30 |
LIU J , WANG Y , LIN L . Small molecules for fat combustion: Targeting obesity[J]. Acta Pharm Sin B, 2019, 9 (2): 220- 236.
|
31 |
DENG Y , HAN Y , GAO S , et al. The physiological functions and polymorphisms of type Ⅱ deiodinase[J]. Endocrinol Metab (Seoul), 2023, 38 (2): 190- 202.
|
32 |
ZHOU Z , YON TOH S , CHEN Z , et al. Cidea-deficient mice have lean phenotype and are resistant to obesity[J]. Nat Genet, 2003, 35 (1): 49- 56.
|
33 |
OLIVERAS-CAñELLAS N , MORENO-NAVARRETE J M , LORENZO P M , et al. Downregulated adipose tissue expression of browning genes with increased environmental temperatures[J]. J Clin Endocrinol Metab, 2023, 109 (1): e145- e154.
|
34 |
JASH S , BANERJEE S , LEE M J , et al. CIDEA transcriptionally regulates UCP1 for britening and thermogenesis in human fat cells[J]. iScience, 2019, 20, 73- 89.
|
35 |
KIM M , PAIK J H , LEE H , et al. Ancistrocladus tectorius extract inhibits obesity by promoting thermogenesis and mitochondrial dynamics in high-fat diet-fed mice[J]. Int J Mol Sci, 2024, 25 (7): 3743.
|
36 |
GOTTSCHALK B , KOSHENOV Z , MALLI R , et al. Implications of mitochondrial membrane potential gradients on signaling and ATP production analyzed by correlative multi-parameter microscopy[J]. Sci Rep, 2024, 14 (1): 14784.
|