畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2546-2554.doi: 10.11843/j.issn.0366-6964.2025.06.003
潘华1,2,3, 孙磊4, 张军1,2,3,*(), 刘莉莉1,2,3, 马文刚1,2,3, 曹爱智1,2,3, 吕明斌1,2,3
收稿日期:
2024-07-31
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
张军
E-mail:zhangjun841013@aliyun.com
作者简介:
潘华(1988-),女,山东菏泽人,硕士,工程师,主要从事胆汁酸应用研究
基金资助:
PAN Hua1,2,3, SUN Lei4, ZHANG Jun1,2,3,*(), LIU Lili1,2,3, MA Wengang1,2,3, CAO Aizhi1,2,3, LV Mingbin1,2,3
Received:
2024-07-31
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHANG Jun
E-mail:zhangjun841013@aliyun.com
摘要:
胆汁酸作为一种天然的动物内源性物质,其抑菌性能正日益受到关注。目前,对胆汁酸抑菌机制的多样性尚缺乏系统性分析。笔者综述了胆汁酸抑菌作用研究的最新进展,归纳了胆汁酸的直接抑菌机制(表面活性剂机制、破坏细胞膜稳态机制和氧化损伤机制)和间接抑菌机制(激活宿主抗菌物质表达机制、影响细菌功能基因表达机制),并在此基础上提出了提高胆汁酸抑菌性能的结构改性策略(二/多聚化、引入正电荷基团和次级胆汁酸合成生物学开发),以期为胆汁酸在畜牧养殖中病原菌防控方面的应用提供理论参考和依据。
中图分类号:
潘华, 孙磊, 张军, 刘莉莉, 马文刚, 曹爱智, 吕明斌. 胆汁酸抑菌机制及结构改性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2546-2554.
PAN Hua, SUN Lei, ZHANG Jun, LIU Lili, MA Wengang, CAO Aizhi, LV Mingbin. Research Progress in Antimicrobial Mechanism and Structural Modification of Bile Acids[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2546-2554.
表 2
不同类型胆汁酸的解离常数"
名称 Name | 不同类型胆汁酸的pKa值 pKa value of different types of bile acids | ||
游离型 Free | 牛磺酸结合型 Tauro-conjugated type | 甘氨酸结合型 Gly-conjugated type | |
胆酸Cholic acid | 4.48 | -0.88 | 3.77 |
去氧胆酸Deoxycholic acid | 4.65 | -0.75 | 3.77 |
鹅去氧胆酸Chenodeoxycholic acid | 4.60 | -0.80 | 3.77 |
熊去氧胆酸Ursodeoxycholic acid | 4.60 | -0.99 | 3.77 |
石胆酸Lithocholic acid | 4.79 | -0.63 | 3.77 |
1 | World Health Organization. 2020 Antibacterial agents in clinical and preclinical development: an overview and analysis [R]. Geneva: World Health Organization, 2021. Licence: CC BY-NC-SA 3.0 IGO. |
2 |
LIN C , WANG Y , LE M , et al. Recent progress in bile acid-based antimicrobials[J]. Bioconjug Chem, 2021, 32 (3): 395- 410.
doi: 10.1021/acs.bioconjchem.0c00642 |
3 |
LIN C , MA Z , GAO Y , et al. Main-chain cationic bile acid polymers mimicking facially amphiphilic antimicrobial peptides[J]. ACS Appl Mater Interfaces, 2023, 15 (28): 33444- 33456.
doi: 10.1021/acsami.3c06424 |
4 |
PAZZI P , PUVIANI A C , DALLA LIBERA M , et al. Bile salt-induced cytotoxicity and ursodeoxycholate cytoprotection: in-vitro study in perifused rat hepatocytes[J]. Eur J Gastroenterol Hepatol, 1997, 9 (7): 703- 709.
doi: 10.1097/00042737-199707000-00011 |
5 | 中华人民共和国农业农村部. 中华人民共和国农业农村部公告第2131号、第2358号、第257号、第614号、第809号[EB]. 中华人民共和国农业农村部公报, 2014-2024. |
Ministry of Agriculture and Rural Affairs of the People's Republic of China. Announcement No. 257, 2358, 257, 614 and 809 of the Ministry of Agriculture and Rural Affairs of the People's Republic of China [EB]. Bulletin of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2014-2024. (in Chinese) | |
6 |
LI Y , WANG S , HU Y , et al. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (Cynoglossus semiliaevis)[J]. Fish Shellfish Immunol, 2021, 116, 52- 60.
doi: 10.1016/j.fsi.2021.06.020 |
7 |
SU C , LI J B , LU Y S , et al. Interactive effects of dietary cholesterol and bile acids on the growth, lipid metabolism, immune response and intestinal microbiota of Litopenaeus vannamei: Sparing effect of bile acids on cholesterol in shrimp diets[J]. Aquaculture, 2022, 547, 737412.
doi: 10.1016/j.aquaculture.2021.737412 |
8 |
WANG M , LI K , JIAO H , et al. Dietary bile acids supplementation decreases hepatic fat deposition with the involvement of altered gut microbiota and liver bile acids profile in broiler chickens[J]. J Anim Sci Biotechnol, 2024, 15 (1): 113.
doi: 10.1186/s40104-024-01071-y |
9 |
PIKE C M , TAM J , MELNYK R A . Tauroursodeoxycholic acid inhibits clostridioides difficile toxin-induced apoptosis[J]. Infect Immun, 2022, 90 (8): e0015322.
doi: 10.1128/iai.00153-22 |
10 |
AN C , CHON H , KU W , et al. Bile acids: major regulator of the gut microbiome[J]. Microorganisms, 2022, 10 (9): 1792.
doi: 10.3390/microorganisms10091792 |
11 |
MOHANTY I , MANNOCHIO-RUSSO H , SCHWEER J V , et al. The underappreciated diversity of bile acid modifications[J]. Cell, 2024, 187 (7): 1801-1818. e20.
doi: 10.1016/j.cell.2024.02.019 |
12 |
DI GREGORIO M C , CAUTELA J . Physiology and physical chemistry of bile acids[J]. Int J Mol Sci, 2021, 22 (4): 1780.
doi: 10.3390/ijms22041780 |
13 |
DAVIES D . Understanding biofilm resistance to antibacterial agents[J]. Nat Rev Drug Discov, 2003, 2 (2): 114- 122.
doi: 10.1038/nrd1008 |
14 |
BARMAN S , BUZOGLU KURNAZ L , YANG X , et al. Facially amphiphilic bile acid-functionalized antimicrobials: combating pathogenic bacteria, fungi, and their biofilms[J]. ACS Infect Dis, 2023, 9 (9): 1769- 1782.
doi: 10.1021/acsinfecdis.3c00266 |
15 |
GUINAN J , VILLA P , THANGAMANI S . Secondary bile acids inhibit Candida albicans growth and morphogenesis[J]. Pathog Dis, 2018, 76 (3): 10.
doi: 10.1093/femspd/fty038 |
16 |
SANCHEZ L M , CHENG A T , WARNER C J , et al. Biofilm formation and detachment in gram-negative pathogens is modulated by select bile acids[J]. PLoS One, 2016, 11 (3): e0149603.
doi: 10.1371/journal.pone.0149603 |
17 |
ELKINS C A , MULLIS L B . Bile-mediated aminoglycoside sensitivity in Lactobacillus species likely results from increased membrane permeability attributable to cholic acid[J]. Appl Environ Microbiol, 2004, 70 (12): 7200- 7209.
doi: 10.1128/AEM.70.12.7200-7209.2004 |
18 | 张军, 田子罡, 王建华, 等. 有机酸抑菌分子机理研究进展[J]. 畜牧兽医学报, 2011, 42 (3): 323- 328. |
ZHANG J , TIAN Z G , WANG J H , et al. Advance in antimicrobial molecular mechanism of organic acid[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42 (3): 323- 328. | |
19 | 张军, 王祺, 汤伟, 等. 细菌素对产生菌获得生存优势及其诱导合成条件的研究进展[J]. 微生物学通报, 2020, 47 (3): 923- 932. |
ZHANG J , WANG Q , TANG W , et al. Bacteriocinogeny, the way to acquire survival advantages through biosynthetic regulation: a review[J]. Microbiology China, 2020, 47 (3): 923- 932. | |
20 |
DONOVAN J M , JACKSON A A . Transbilayer movement of fully ionized taurine-conjugated bile salts depends upon bile salt concentration, hydrophobicity, and membrane cholesterol content[J]. Biochemistry, 1997, 36 (38): 11444- 11451.
doi: 10.1021/bi9705927 |
21 |
COLLINS S L , STINE J G , BISANZ J E , et al. Bile acids and the gut microbiota: metabolic interactions and impacts on disease[J]. Nat Rev Microbiol, 2023, 21 (4): 236- 247.
doi: 10.1038/s41579-022-00805-x |
22 |
TIAN Y , GUI W , KOO I . The microbiome modulating activity of bile acids[J]. Gut Microbes, 2020, 11 (4): 979- 996.
doi: 10.1080/19490976.2020.1732268 |
23 | URDANETA V , CASADESÚS J . Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Front Med (Lausanne), 2017, 4, 163. |
24 | MILLER S I . Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules[J]. mBio, 2016, 7 (5): e01541- 16. |
25 |
BEGLEY M , GAHAN C G , HILL C . The interaction between bacteria and bile[J]. FEMS Microbiol Rev, 2005, 29 (4): 625- 651.
doi: 10.1016/j.femsre.2004.09.003 |
26 |
LEVERRIER P , DIMOVA D , PICHEREAU V , et al. Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis[J]. Appl Environ Microbiol, 2003, 69 (7): 3809- 3818.
doi: 10.1128/AEM.69.7.3809-3818.2003 |
27 |
BUSTOS A Y , FONT DE VALDEZ G , FADDA S , et al. New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health[J]. Food Res Int, 2018, 112, 250- 262.
doi: 10.1016/j.foodres.2018.06.035 |
28 |
KURDI P , KAWANISHI K , MIZUTANI K , et al. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria[J]. J Bacteriol, 2006, 188 (5): 1979- 1986.
doi: 10.1128/JB.188.5.1979-1986.2006 |
29 |
WANG X J , CHEN B Y , YANG B W , et al. Short communication: chemical structure, concentration, and pH are key factors influencing antimicrobial activity of conjugated bile acids against lactobacilli[J]. J Dairy Sci, 2021, 104 (2): 1524- 1530.
doi: 10.3168/jds.2020-19293 |
30 |
WATANABE M , FUKIYA S , YOKOTA A . Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58 (6): 1143- 1152.
doi: 10.1194/jlr.M075143 |
31 |
PALACE S G , FRYLING K E , LI Y , et al. Identification of bile acid and fatty acid species as candidate rapidly bactericidal agents for topical treatment of gonorrhoea[J]. J Antimicrob Chemother, 2021, 76 (10): 2569- 2577.
doi: 10.1093/jac/dkab217 |
32 | CREMERS C M , KNOEFLER D , VITVITSKY V , et al. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo[J]. Proc Natl Acad Sci USA, 2014, 111 (16): E1610- 9. |
33 |
KANDELL R L , BERNSTEIN C . Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer[J]. Nutr Cancer, 1991, 16 (3-4): 227- 238.
doi: 10.1080/01635589109514161 |
34 |
PRIETO A I , RAMOS-MORALES F , CASADESÚS J . Bile-induced DNA damage in Salmonella enterica[J]. Genetics, 2004, 168 (4): 1787- 1794.
doi: 10.1534/genetics.104.031062 |
35 | TREMBLAY S , ROMAIN G , ROUX M , et al. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection[J]. Infect Immun, 2017, 85 (6): e00942- 16. |
36 |
LAJCZAK N K , SAINT-CRIQ V , O'DWYER A M , et al. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and-2 secretion by colonic epithelial cells[J]. FASEB J, 2017, 31 (9): 3848- 3857.
doi: 10.1096/fj.201601365R |
37 |
WANG Y , YU Y , LI L , et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides[J]. Nat Commun, 2023, 14 (1): 5093.
doi: 10.1038/s41467-023-40565-7 |
38 |
INAGAKI T , MOSCHETTA A , LEE Y K , et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci USA, 2006, 103 (10): 3920- 3925.
doi: 10.1073/pnas.0509592103 |
39 |
RASHID S A , NORMAN N , TEO S H , et al. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates[J]. World J Microbiol Biotechnol, 2021, 37 (9): 152.
doi: 10.1007/s11274-021-03118-y |
40 |
YANG X , STEIN K R , HANG H C . Anti-infective bile acids bind and inactivate a Salmonella virulence regulator[J]. Nat Chem Biol, 2023, 19 (1): 91- 100.
doi: 10.1038/s41589-022-01122-3 |
41 |
ZHANG L , FAN Y . Noncovalent bile acid oligomers as facial amphiphilic antimicrobials[J]. Langmuir, 2023, 39 (1): 495- 506.
doi: 10.1021/acs.langmuir.2c02787 |
42 |
SINGLA P , DALAL P , KAUR M , et al. Bile acid oligomers and their combination with antibiotics to combat bacterial infections[J]. J Med Chem, 2018, 61 (22): 10265- 10275.
doi: 10.1021/acs.jmedchem.8b01433 |
43 |
ZHOU L , LI Y , LI S , et al. Cholic acid-derived facial surfactants with long side-chain quaternary ammonium: synthesis and antimicrobial activity study[J]. J Surfactants Deterg, 2016, 19 (4): 803- 811.
doi: 10.1007/s11743-016-1837-4 |
44 |
NIE Q , LUO X , WANG K , et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway[J]. Cell, 2024, 187 (11): 2717-2734. e33.
doi: 10.1016/j.cell.2024.03.034 |
45 |
GUZIOR D V , OKROS M , SHIVEL M , et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity[J]. Nature, 2024, 626 (8000): 852- 858.
doi: 10.1038/s41586-024-07017-8 |
46 |
SATO Y , ATARASHI K . Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians[J]. Nature, 2021, 599 (7885): 458- 464.
doi: 10.1038/s41586-021-03832-5 |
47 |
RIDLON J M , GASKINS H R . Another renaissance for bile acid gastrointestinal microbiology[J]. Nat Rev Gastroenterol Hepatol, 2024, 21 (5): 348- 364.
doi: 10.1038/s41575-024-00896-2 |
48 | GANEWATTA M S , RAHMAN M A , MERCADO L , et al. Facially amphiphilic polyionene biocidal polymers derived from lithocholic acid[J]. Bioact Mater, 2018, 3 (2): 186- 193. |
[1] | 刘子龙, 李乔, 吴怡, 王慧慧, 李讨讨, 马友记. 肝转录组揭示中草药饲料添加剂可能影响湖羊肝组织胆汁酸代谢和免疫功能[J]. 畜牧兽医学报, 2025, 56(6): 3014-3026. |
[2] | 梁莉雯, 李军星, 袁秀芳, 余斌, 叶十一, 徐丽华, 苏菲, 刘璨颖. 从油茶籽提取的茶皂素对猪源多重耐药产肠毒素大肠杆菌的体外抑菌效果[J]. 畜牧兽医学报, 2025, 56(5): 2451-2465. |
[3] | 王馨怡, 姚军虎, 张霞, 张俊. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1006-1018. |
[4] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[5] | 黄杰, 阮子豪, 蔡瑞. 抗菌肽在猪精液常温保存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1401-1411. |
[6] | 操庆国, 郭钦, 彭凯, 蔡佳惠, 任成万, 李昀庭. 盐酸小檗碱与左氧氟沙星联合抑制MRSA及其机制研究[J]. 畜牧兽医学报, 2022, 53(9): 3208-3220. |
[7] | 杜雪儿, 王菁, 姚军虎, 曹阳春. 胆汁酸肠肝循环转运蛋白及FXR对其的调控机制[J]. 畜牧兽医学报, 2021, 52(10): 2721-2739. |
[8] | 陈禹先,周彤,谢鲲鹏,云宝仪,谢明杰. 黄芩素对耐甲氧西林金黄色葡萄球菌抑菌机制的研究[J]. 畜牧兽医学报, 2013, 44(12): 2000-2006. |
[9] | 尚红梅,宋慧,姚旭,沈思捷,王丽娜,吴波,姜云瑶,丁国栋. 小刺猴头发酵多糖对肉鸡胆固醇沉积的影响[J]. 畜牧兽医学报, 2013, 44(12): 1939-1945. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||