畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1518-1526.doi: 10.11843/j.issn.0366-6964.2025.04.005
陈婷1,3(), 崔亚东2, 兰伟2, 孔祥峰1,2,3,*(
)
收稿日期:
2024-07-20
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
孔祥峰
E-mail:chenting@mails.ucas.ac.cn;nnkxf@isa.ac.cn
作者简介:
陈婷(2000-), 女, 广西桂林人, 博士生, 主要从事动物营养学研究, E-mail: chenting@mails.ucas.ac.cn
基金资助:
CHEN Ting1,3(), CUI Yadong2, LAN Wei2, KONG Xiangfeng1,2,3,*(
)
Received:
2024-07-20
Online:
2025-04-23
Published:
2025-04-28
Contact:
KONG Xiangfeng
E-mail:chenting@mails.ucas.ac.cn;nnkxf@isa.ac.cn
摘要:
虽然饲用抗生素可以缓解由炎症反应引起的动物采食量和生产性能的下降,但是也会导致动物体内菌群产生耐药性和抗生素残留,造成安全隐患。因此,寻找绿色高效的饲料添加剂替代饲用抗生素成为畜牧领域的研发重点。氨基葡萄糖是一种天然的单糖,可以由几丁质经过酶解反应或强酸水解获得。近年来的研究发现,氨基葡萄糖具有抗炎、抗氧化、增强机体免疫功能、提高繁殖性能等功能,且无毒副作用,有望成为理想的饲用抗生素替代物。本文综述了氨基葡萄糖的制备方法、吸收与代谢、功能及其对动物的饲喂效果,旨在为其在动物生产中的应用提供参考。
中图分类号:
陈婷, 崔亚东, 兰伟, 孔祥峰. 氨基葡萄糖的功能及其在动物生产中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1518-1526.
CHEN Ting, CUI Yadong, LAN Wei, KONG Xiangfeng. Function of Glucosamine and Its Application in Animal Production[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1518-1526.
1 | ARSÈNE M M J , DAVARES A K L , VIKTOROVNA P I , et al. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions[J]. Vet World, 2022, 15 (3): 662. |
2 | 张莎. 后抗生素时代饲料行业发展现状及未来展望[J]. 中国饲料, 2022 (6): 117- 120. |
ZHANG S . Current situation and future prospect of feed industry in the post-antibiotic era[J]. China Feed, 2022 (6): 117- 120. | |
3 | 夏晓萍. 兽用抗生素替代使用的策略分析[J]. 中国禽业导刊, 2024, 41 (2): 38- 40. |
XIA X P . Analysis of strategies for the substitution of veterinary antibiotics[J]. Guide to Chinese Poultry, 2024, 41 (2): 38- 40. | |
4 |
RAFIQ K , TOFAZZAL HOSSAIN M , AHMED R , et al. Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry[J]. Front Vet Sci, 2022, 8, 794588.
doi: 10.3389/fvets.2021.794588 |
5 | 邬锐军, 张浩, 刘小刚, 等. 植物提取物在畜禽生产中的研究进展[J]. 当代畜禽养殖业, 2023, 43 (6): 29- 31. |
WU R J , ZHANG H , LIU X G , et al. Research progress of plant extracts in livestock and poultry production[J]. Modern Animal Husbandry, 2023, 43 (6): 29- 31. | |
6 | 黄增颖, 邓赣奇, 梁耀文, 等. 微生态制剂在畜禽生产中的研究和应用进展[J]. 家畜生态学报, 2023, 44 (11): 92- 96. |
HUANG Z Y , DENG G Q , LIANG Y W , et al. Progress in research and application of microecological preparations in livestock and poultry production[J]. Journal of Domestic Animal Ecology, 2023, 44 (11): 92- 96. | |
7 |
WANG G . The antimicrobial peptide database is 20 years old: Recent developments and future directions[J]. Protein Sci, 2023, 32 (10): e4778.
doi: 10.1002/pro.4778 |
8 |
NAGAOKA I , IGARASHI M , HUA J , et al. Recent aspects of the anti-inflammatory actions of glucosamine[J]. Carbohydr Polym, 2011, 84 (2): 825- 830.
doi: 10.1016/j.carbpol.2010.04.007 |
9 | SARAVANAN V , DAVOODBASHA M , RAJESH A , et al. Extraction and characterization of chitosan from shell of borassus flabellifer and their antibacterial and antioxidant applications[J]. Int J Biol Macromol, 2023, 253 (Pt 2): 126592. |
10 |
MARTINS J M , DOS SANTOS NETO L D , NOLETO-MENDONÇA R A , et al. Dietary supplementation with glycosaminoglycans reduces locomotor problems in broiler chickens[J]. Poult Sci, 2020, 99 (12): 6974- 6982.
doi: 10.1016/j.psj.2020.09.061 |
11 |
SONI T , ZHUANG M , KUMAR M , et al. Multifaceted production strategies and applications of glucosamine: A comprehensive review[J]. Crit Rev Biotechnol, 2023, 43 (1): 100- 120.
doi: 10.1080/07388551.2021.2003750 |
12 | AHUJA V , BHATT A K , SHARMA V , et al. Advances in glucosamine production from waste biomass and microbial fermentation technology and its applications[J]. Biomass Convers Biorefin, 2021, 15, 1643- 1665. |
13 |
MA Q , GAO X . Categories and biomanufacturing methods of glucosamine[J]. Appl Microbiol Biotechnol, 2019, 103 (19): 7883- 7889.
doi: 10.1007/s00253-019-10084-x |
14 | JAMIALAHMADI K . Beneficial applications of glucosamine[M]. Molecular Nutrition: Carbohydrates, Academic Press, 2019: 319- 336. |
15 | DAS S , CHOWDHURY C , KUMAR S P , et al. Microbial production of N-acetyl-D-glucosamine (GlcNAc) for versatile applications: Biotechnological strategies for green process development[J]. Carbohydr Res, 2024, 109039. |
16 |
LV Y M , LABORDA P , HUANG K , et al. Highly efficient and selective biocatalytic production of glucosamine from chitin[J]. Green Chem, 2017, 19 (2): 527- 535.
doi: 10.1039/C6GC02910H |
17 |
BAO J , LIU N , ZHU L , et al. Programming a biofilm-mediated multienzyme-assembly-cascade system for the biocatalytic production of glucosamine from chitin[J]. J Agric Food Chem, 2018, 66 (30): 8061- 8068.
doi: 10.1021/acs.jafc.8b02142 |
18 |
ZHANG J , LIU L , LI J , et al. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissolved oxygen level[J]. Bioresour Technol, 2012, 111, 507- 511.
doi: 10.1016/j.biortech.2012.02.063 |
19 |
DENG M D , SEVERSON D K , GRUND A D , et al. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine[J]. Metab Eng, 2005, 7 (3): 201- 214.
doi: 10.1016/j.ymben.2005.02.001 |
20 |
GU Y , LV X , LIU Y , et al. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis[J]. Metab Eng, 2019, 51, 59- 69.
doi: 10.1016/j.ymben.2018.10.002 |
21 |
IBRAHIM A , GILZAD-KOHAN M H , AGHAZADEH-HABASHI A , et al. Absorption and bioavailability of glucosamine in the rat[J]. J Pharm Sci, 2012, 101 (7): 2574- 2583.
doi: 10.1002/jps.23145 |
22 |
ULDRY M , IBBERSON M , HOSOKAWA M , et al. GLUT2 is a high affinity glucosamine transporter[J]. FEBS Lett, 2002, 524 (1-3): 199- 203.
doi: 10.1016/S0014-5793(02)03058-2 |
23 |
PERSIANI S , RODA E , ROVATI L C , et al. Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man[J]. Osteoarthritis Cartilage, 2005, 13 (12): 1041- 1049.
doi: 10.1016/j.joca.2005.07.009 |
24 | SETNIKAR I , GIACCHETTI C , ZANOLO G . Pharmacokinetics of glucosamine in the dog and in man[J]. Arzneim Forsch, 1986, 36 (4): 729- 735. |
25 |
LAVERTY S , SANDY J D , CELESTE C , et al. Synovial fluid levels and serum pharmacokinetics in a large animal model following treatment with oral glucosamine at clinically relevant doses[J]. Arthritis Rheum, 2005, 52 (1): 181- 191.
doi: 10.1002/art.20762 |
26 |
DERWICH M , GÓRSKI B , AMM E , et al. Oral glucosamine in the treatment of temporomandibular joint osteoarthritis: A systematic review[J]. Int J Mol Sci, 2023, 24 (5): 4925.
doi: 10.3390/ijms24054925 |
27 |
BAI J , JIA H , ZHAI Z , et al. Protective effect of glucosamine on zearalenone-induced reproductive toxicity and placental dysfunction in mice[J]. Food Chem Toxicol, 2023, 172, 113539.
doi: 10.1016/j.fct.2022.113539 |
28 |
ZHANG T , CHEN S , DOU H , et al. Novel glucosamine-loaded thermosensitive hydrogels based on poloxamers for osteoarthritis therapy by intra-articular injection[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118, 111352.
doi: 10.1016/j.msec.2020.111352 |
29 | 陈中卫, 王瑞秀, 刘强, 等. 低聚壳聚糖替代抗生素对樱桃谷肉鸭生长性能、屠宰性能、肠道屏障功能和肌肉品质的影响[J]. 畜牧兽医学报, 2021, 52 (7): 1927- 1941. |
CHEN Z W , WANG R X , LIU Q , et al. Effects of chitosanoligosaccharide supplementation as an alternative to antibiotic on the growth performance, slaughter performance, intestinal barrier function and meat quality of cherry valley ducks[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (7): 1927- 1941. | |
30 |
MUBARAKALI D , LEWISOSCAR F , GOPINATH V , et al. An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants[J]. Microb Pathog, 2018, 114, 323- 327.
doi: 10.1016/j.micpath.2017.11.043 |
31 |
LIU B , YANG W , ZHANG K . Role of glucosamine and chondroitin in the prevention of cancer: A meta-analysis[J]. Nutr Cancer, 2023, 75 (3): 785- 794.
doi: 10.1080/01635581.2023.2173258 |
32 |
KUMAR P , TAMBE P , PAKNIKAR K M , et al. Folate/N-acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study[J]. Colloids Surf B, 2017, 156, 203- 212.
doi: 10.1016/j.colsurfb.2017.05.032 |
33 |
LI G , ZHANG X , LIU Y , et al. Relationship between glucosamine use and the risk of lung cancer: data from a nationwide prospective cohort study[J]. Eur Respir J, 2022, 59 (3): 2101399.
doi: 10.1183/13993003.01399-2021 |
34 |
YU Z , JU Y , LIU H . Anti-lung cancer effect of glucosamine by suppressing the phosphorylation of FOXO[J]. Mol Med Rep, 2017, 16 (3): 3395- 3400.
doi: 10.3892/mmr.2017.6976 |
35 |
LEE D H , CAO C , ZONG X , et al. Glucosamine and chondroitin supplements and risk of colorectal adenoma and serrated polyp[J]. Cancer Epidemiol Biomarkers Prev, 2020, 29 (12): 2693- 2701.
doi: 10.1158/1055-9965.EPI-20-0805 |
36 |
ZAHEDIPOUR F , DALIRFARDOUEI R , KARIMI G , et al. Molecular mechanisms of anticancer effects of glucosamine[J]. Biomed Pharmacother, 2017, 95, 1051- 1058.
doi: 10.1016/j.biopha.2017.08.122 |
37 |
WERSTUCK G H , KHAN M I , FEMIA G , et al. Glucosamine-induced endoplasmic reticulum dysfunction is associated with accelerated atherosclerosis in a hyperglycemic mouse model[J]. Diabetes, 2006, 55 (1): 93- 101.
doi: 10.2337/diabetes.55.01.06.db05-0633 |
38 |
YAN Y , WANSHUN L , BAOQIN H , et al. The antioxidative and immunostimulating properties of D-glucosamine[J]. Int Immunopharmacol, 2007, 7 (1): 29- 35.
doi: 10.1016/j.intimp.2006.06.003 |
39 |
FERNANDEZ-ROJAS B , GOMEZ-SIERRA T , MEDINA-CAMPOS O N , et al. Antioxidant activity of glucosamine and its effects on ROS production, Nrf2, and O-GlcNAc expression in HMEC-1 cells[J]. Curr Res Toxicol, 2023, 5, 100128.
doi: 10.1016/j.crtox.2023.100128 |
40 |
MENDIS E , KIM M , RAJAPAKSE N , et al. Sulfated glucosamine inhibits oxidation of biomolecules in cells via a mechanism involving intracellular free radical scavenging[J]. Eur J Pharmacol, 2008, 579 (1-3): 74- 85.
doi: 10.1016/j.ejphar.2007.10.027 |
41 |
ADEBOWALE A , DU J , LIANG Z , et al. The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs[J]. Biopharm Drug Dispos, 2002, 23 (6): 217- 225.
doi: 10.1002/bdd.315 |
42 |
MOON J M , FINNEGAN P , STECKER R A , et al. Impact of glucosamine supplementation on gut health[J]. Nutrients, 2021, 13 (7): 2180.
doi: 10.3390/nu13072180 |
43 |
WANG D , RUSSEL W A , MACDONALD K M , et al. Analysis of the gut microbiome in sled dogs reveals glucosamine-and activity-related effects on gut microbial composition[J]. Front Vet Sci, 2024, 11, 1272711.
doi: 10.3389/fvets.2024.1272711 |
44 |
LI Q , LI L Y , LI Q Q , et al. Influence of natural polysaccharides on intestinal microbiota in inflammatory bowel diseases: An overview[J]. Foods, 2022, 11 (8): 1084.
doi: 10.3390/foods11081084 |
45 |
TEDELIND S , WESTBERG F , KJERRULF M , et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease[J]. World J Gastroenterol, 2007, 13 (20): 2826.
doi: 10.3748/wjg.v13.i20.2826 |
46 |
LI F , ZHANG Z , BAI Y , et al. Glucosamine improves non-alcoholic fatty liver disease induced by high-fat and high-sugar diet through regulating intestinal barrier function, liver inflammation, and lipid metabolism[J]. Molecules, 2023, 28 (19): 6918.
doi: 10.3390/molecules28196918 |
47 |
ANDERSON J W , NICOLOSI R J , BORZELLECA J F . Glucosamine effects in humans: A review of effects on glucose metabolism, side effects, safety considerations and efficacy[J]. Food Chem Toxicol, 2005, 43 (2): 187- 201.
doi: 10.1016/j.fct.2004.11.006 |
48 | ECHARD B W , TALPUR N A , FUNK K A , et al. Effects of oral glucosamine and chondroitin sulfate alone and in combination on the metabolism of SHR and SD rats[J]. Mol Cell Biochem, 2001, 225 (1-2): 85- 91. |
49 | SETNIKAR I , PACINI M A , REVEL L . Antiarthritic effects of glucosamine sulfate studied in animal models[J]. Arzneim Forsch, 1991, 41 (5): 542- 545. |
50 | VO N X , LE NNH , CHU T , et al. Effectiveness and safety of glucosamine in osteoarthritis: A systematic review[J]. Pharmacy (Basel), 2023, 11 (4): 117. |
51 | Institute of Medicine (US) and National Research Council (US) Committee on the Framework for Evaluating the Safety of Dietary Supplements . Dietary supplements: A framework for evaluating safty[M]. Washington (DC): National Academies Press (US), 2005. |
52 |
NELSON B A , ROBINSON K A , BUSE M G . High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes[J]. Diabetes, 2000, 49 (6): 981- 991.
doi: 10.2337/diabetes.49.6.981 |
53 |
VALLET J L , MILES J R , FREKING B A , et al. Glucosamine supplementation during late gestation alters placental development and increases litter size[J]. J Anim Sci Biotechnol, 2017, 8, 68.
doi: 10.1186/s40104-017-0198-9 |
54 | 刘月帅. 妊娠期添加氨基葡萄糖对定时输精母猪繁殖性能的影响[D]. 兰州: 西北民族大学, 2023. |
LIU Y S. Effect of Glucosamine supplementation during pregnancy on reproductive performance of fixed-time artificial insemination sows[D]. Lanzhou: Northwest University for Nationalities. 2023. (in Chinese) | |
55 | 冯涛, 韦尚丽, 曹忻, 等. 氨基葡萄糖调控仔猪初生重和均匀度的应用及机理[J]. 中国畜牧兽医, 2019, 46 (3): 740- 746. |
FENG T , WEI S L , CAO X , et al. Application and mechanism of glucosamine in regulating primary weight and uniformity of piglets[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46 (3): 740- 746. | |
56 | 刘彬, 刘彦, 郑琛, 等. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55 (7): 3246- 3254. |
LIU B , LIU Y , ZHENG C , et al. Effects of glucosamine on growth performance, antioxidant capacity, and immune function in weaned piglets[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 3246- 3254. | |
57 | WANG Z B , HU J , YANG X Y , et al. N-Acetyl-D-glucosamine improves the intestinal development and nutrient absorption of weaned piglets via regulating the activity of intestinal stem cells[J]. Anim Nutr, 2022, 8 (1): 10- 17. |
58 |
BAI J , LI J , LIU N , et al. Glucosamine alleviates zearalenone-induced damage to porcine trophectoderm cells by activating the PI3K/AKT signaling pathway[J]. Food Funct, 2022, 13 (14): 7857- 7870.
doi: 10.1039/D2FO00928E |
59 |
HE B , BAI J , WU Z . Glucosamine enhances proliferation, barrier, and anti-oxidative functions in porcine trophectoderm cells[J]. Food Funct, 2022, 13 (8): 4551- 4561.
doi: 10.1039/D1FO04086C |
60 |
YI Y J , CHEON Y M , PARK C S . Effect of N-acetyl-D-glucosamine, and glycerol concentration and equilibration time on acrosome morphology and motility of frozen-thawed boar sperm[J]. Anim Reprod Sci, 2002, 69 (1-2): 91- 97.
doi: 10.1016/S0378-4320(01)00175-0 |
61 | 许天政, 班明政, 陈琴, 等. 氨基葡萄糖对肉仔鸡生长性能、养分代谢及炎症反应的影响[J]. 动物营养学报, 2023, 35 (7): 4402- 4409. |
XU T Z , BAN M Z , CHEN Q , et al. Effects of glucosamine on growth performance, nutrient metabolism and lnflammatory response of broilers[J]. Chinese Journal of Animal Nutrition, 2023, 35 (7): 4402- 4409. | |
62 |
BARREIRO F R , SAGULA A L , JUNQUEIRA O M , et al. Densitometric and biochemical values of broiler tibias at different ages[J]. Poult Sci, 2009, 88 (12): 2644- 2648.
doi: 10.3382/ps.2008-00079 |
63 |
SGAVIOLI S , SANTOS E T , BORGES L L , et al. Effect of the addition of glycosaminoglycans on bone and cartilaginous development of broiler chickens[J]. Poult Sci, 2017, 96 (11): 4017- 4025.
doi: 10.3382/ps/pex228 |
64 | 张施徽海, 张蓉, 陈朝桂, 等. 氨基葡萄糖对高产蛋鸡产蛋性能的影响[J]. 贵州畜牧兽医, 2016, 40 (4): 1- 4. |
ZHANG S H W , ZHANG R , CHEN C G , et al. Effects of GluN on laying performance of layers during lay-peak period[J]. Guizhou Journal of Animal Husbandry & Veterinary Medicine, 2016, 40 (4): 1- 4. | |
65 | 石靖. GlcN对蛋鸡采食调节及其路径分析[D]. 贵阳: 贵州大学, 2020. |
SHI J. Modulation of glucosamine on feed intake and pathway analysis in laying hens[D]. Guiyang, Guizhou University, 2020. (in Chinese) | |
66 | 张海军. 笼养蛋鸡骨质疏松症的临床症状、剖检变化和防治[J]. 现代畜牧科技, 2018 (9): 96. |
ZHANG H J . Clinical symptoms, autopsy changes and prevention and treatment of osteoporosis in caged laying hens[J]. Modern Animal Science and Technology, 2018 (9): 96. | |
67 | 陈朝桂, 施晓丽, 孙澄慧, 等. 氨基葡萄糖对蛋鸡饲粮钙吸收和小肠钙结合蛋白基因表达的影响[J]. 中国畜牧杂志, 2021, 57 (7): 184- 188. |
CHEN C G , SHI X L , SUN C H , et al. Effect of glucosamine on calcium absorption and intestinal calcium-binding protein gene expression in laying hens[J]. Chinese Journal of Animal Husbandry, 2021, 57 (7): 184- 188. |
[1] | 孟祥旭, 李佳, 任德明, 陈奎蓉, 和艺云, 王立贤, 盛熙晖, 王立刚. 民猪猪繁殖与呼吸综合征恢复力高低组血清代谢组学研究[J]. 畜牧兽医学报, 2025, 56(4): 1689-1699. |
[2] | 王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790. |
[3] | 朱云, 王钰明, 孙晓晓, 陈辉, 赵峰, 解竞静, 陈一凡, 萨仁娜. 低蛋白多元化饲粮添加玉米蛋白粉对白羽肉鸡生长性能和消化特性的影响[J]. 畜牧兽医学报, 2025, 56(4): 1802-1812. |
[4] | 李晓彤, 王鹏宇, 方颖妍, 于鸿希, 张毅, 王雅春, 张元沛, 李彦芹, 姜力. 公牛精子耐冻性相关基因多态性位点的挖掘与功能验证[J]. 畜牧兽医学报, 2025, 56(4): 1981-1988. |
[5] | 张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994. |
[6] | 郭茂川, 何冉. 疥螨功能基因及其应用的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 492-500. |
[7] | 龙怡舟, 娄文琦, 黄上真, 师睿, 陈功, 李斌, 次桑卓玛, 徐青, 王雅春. 基于血液代谢组筛选奶牛血氧饱和度相关代谢物及通路[J]. 畜牧兽医学报, 2025, 56(2): 621-632. |
[8] | 史心琦, 马梦梦, 高腾云, 刘深贺. 动物肠道微生物调控精液品质的研究进展[J]. 畜牧兽医学报, 2025, 56(1): 26-35. |
[9] | 吕永乐, 郑雯, 王签慧, 朱家琦, 黄晓琦, 曹中赞, 栾新红. 抗代谢相关脂肪性肝病的天然活性物质研究进展[J]. 畜牧兽医学报, 2025, 56(1): 45-62. |
[10] | 王恒泰, 吕浪, 蒋卉, 程君生, 刘铭赫, 储岳峰, 许健, 李朋, 丁家波. 牛种布鲁氏菌MgtC蛋白在抵抗低Mg2+环境中的生物学功能研究[J]. 畜牧兽医学报, 2025, 56(1): 365-377. |
[11] | 王盛琪, 季新雨, 黄福青, 胡曼丽, 王柔淇, 耿玉欣, 孙迎雪, 齐智利, 张鑫. 添加红景天苷的全价粮对犬血液生化指标和肝转录组学的影响[J]. 畜牧兽医学报, 2025, 56(1): 455-465. |
[12] | 杨硕, 霍敏, 苏子轩, 石玉祥. 线粒体质量控制对畜禽氧化应激影响的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3769-3776. |
[13] | 王靖萱, 代立志, 王振宇, 刘滢, 禹桐, 严敏, 王瑞龙, 肖建华. 高脂饮食诱导胰岛素抵抗过程中肝脏能量代谢特征的研究[J]. 畜牧兽医学报, 2024, 55(9): 4172-4185. |
[14] | 谈晓梅, 徐彦召, 刘光清, 孟春春. 嵌杯病毒主要衣壳蛋白的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3354-3361. |
[15] | 李瑶, 贾蕊, 李杰, 滚双宝, 杨巧丽, 王龙龙, 张鹏霞, 高小莉, 黄晓宇. 低温对合作猪脂肪组织形态、脂代谢相关基因表达和酶活性及AMPK/PGC-1α通路的影响[J]. 畜牧兽医学报, 2024, 55(8): 3418-3426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||