畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1027-1041.doi: 10.11843/j.issn.0366-6964.2025.03.006
收稿日期:
2024-03-29
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
周彩琴
E-mail:1468965900@qq.com;44619165@qq.com
作者简介:
刘爱军(1989-),男,江西上饶人,硕士,兽医师,主要从事疫病监测与流行病学调查,E-mail: 1468965900@qq.com,Tel: 0571-56269625
基金资助:
LIU Aijun(), ZHANG Chuanliang, HUANG Xiaobing, ZHOU Caiqin*(
)
Received:
2024-03-29
Online:
2025-03-23
Published:
2025-04-02
Contact:
ZHOU Caiqin
E-mail:1468965900@qq.com;44619165@qq.com
摘要:
猪繁殖与呼吸综合征(porcine reproductive and respiratory syndrome,PRRS)是由猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV)引起的以猪呼吸系统疾病和母猪繁殖障碍为主要特征的传染病,给全球养猪业造成了巨大的经济损失。然而,PRRS至今仍没有安全有效的疫苗和药物进行防治。全面深入理解PRRSV生命周期可以为PRRS防控提供新的思路。因此,本文在简述PRRSV生命周期的基础上,重点对病毒侵入、复制与转录、翻译及翻译后修饰、组装等过程的研究进展进行综述,以期为PRRSV致病机制及防控研究提供参考。
中图分类号:
刘爱军, 张传亮, 黄晓兵, 周彩琴. 猪繁殖与呼吸综合征病毒生命周期的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1027-1041.
LIU Aijun, ZHANG Chuanliang, HUANG Xiaobing, ZHOU Caiqin. Research Progress on the Life Cycle of Porcine Reproductive and Respiratory Syndrome Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1027-1041.
表 1
介导PRRSV感染的受体/因子及其主要功能"
受体/因子 Receptors/factor | PRRSV结合因子 PRRSV binding partner | 主要功能 Main function | 参考文献 Reference |
HS | M | 参与介导病毒黏附 | [ |
Sn | GP5/M N | 参与介导病毒黏附和内化 参与介导病毒内化 | [ [ |
CD163 | GP2/GP4 | 介导病毒黏附、内化和脱壳 | [ |
MYH9 | GP5 | 介导病毒内化 | [ |
vimentin | Nsp2和N蛋白 | 与病毒黏附和内化有关 | [ |
HSPA8 | GP4 | 促进病毒黏附,协同CD163参与病毒内化 | [ |
TIM1/4 | 凋亡类似物磷脂酰丝氨酸 | 介导巨胞饮途径内化 | [ |
EGFR | 尚不清楚 | 调节肌动蛋白的碎裂和重组,促进内化 | [ |
Syndecan-4 | 尚不清楚 | 参与介导黏附和内化 | [ |
CD151 | 3′UTR | 与感染相关,但具体机制尚不清楚 | [ |
CD209 | 尚不清楚 | 与感染相关,但具体机制尚不清楚 | [ |
Siglec-10 | GP5 | 参与介导病毒黏附和内化 | [ |
表 2
介导PRRSV复制与转录的宿主因子及其主要功能"
宿主因子 Host factor | PRRSV结合因子 PRRSV binding partner | 生物学功能 Biological function | 参考文献 Reference |
DDX18 | 负链gRNA的G4结构 | 解开G4结构,促进gRNA复制 | [ |
DDX5 | Nsp9 | 促进gRNA复制 | [ |
DDX21 | Nsp1β | 稳定PRRSV Nsp1α、Nsp1β和N蛋白的表达 | [ |
DHX9 | N | 解开PRRSV RNA二级结构,促进gRNA复制和 长链sgRNA转录 | [ |
HnRNP E1和E2 | 5′UTR/Nsp1β | 促进PRRSV gRNA复制和转录 | [ |
HnRNP F | 负链gRNA G4结构 | 促进PRRSV gRNA复制 | [ |
RBM39 | vRNA | 可能通过稳定PRRSV RNA,促进病毒复制 | [ |
PABP | N | 促进PRRSV gRNA复制 | [ |
ATF4 | Nsp2/3和vRNA | 促进PRRSV gRNA复制 | [ |
SRP14 | Nsp2 | 促进PRRSV gRNA复制 | [ |
HSP27 | Nsp1α、Nsp1β、Nsp5、Nsp9、 Nsp11和nsp12 | 促进PRRSV gRNA复制 | [ |
HSP70 | Nsp12 | 促进PRRSV gRNA复制 | [ |
ANXA2 | Nsp9 | 促进PRRSV gRNA复制 | [ |
PCNA | Nsp9、Nsp12和N | 促进PRRSV gRNA复制 | [ |
CDK9 | 尚不清楚 | 促进PRRSV sgRNA合成 | [ |
PON1 | Nsp9 | 促进PRRSV gRNA复制 | [ |
1 | HOLTKAMP D J, KLIEBENSTEIN J B, ZIMMERMAN J J, et al. Economic impact of porcine reproductive and respiratory syndrome virus on U.S. pork producers[R]//Iowa State University Animal Industry Report 2012.658(1): doi: https://doi.org/10.31274/ans_air-180814-28. |
2 | 刘小红, 陈瑶生. 2023年生猪产业与技术发展状况[J]. 中国畜牧杂志, 2024, 60 (3): 302- 307. |
LIU X H , CHEN Y S . Development of swine industry and technology in 2023[J]. Chinese Journal of Animal Science, 2024, 60 (3): 302- 307. | |
3 |
CHEN X X , QIAO S L , LI R , et al. Evasion strategies of porcine reproductive and respiratory syndrome virus[J]. Front Microbiol, 2023, 14, 1140449.
doi: 10.3389/fmicb.2023.1140449 |
4 |
XIONG J Y , CUI X Y , ZHAO K , et al. A novel motif in the 3'-UTR of PRRSV-2 is critical for viral multiplication and contributes to enhanced replication ability of highly pathogenic or L1 PRRSV[J]. Viruses, 2022, 14 (2): 166.
doi: 10.3390/v14020166 |
5 |
CHAUDHARI J , NGUYEN T N , VU H L X . Identification of cryptic promoter activity in cDNA sequences corresponding to PRRSV 5' untranslated region and transcription regulatory sequences[J]. Viruses, 2022, 14 (2): 400.
doi: 10.3390/v14020400 |
6 |
LUNNEY J K , FANG Y , LADINIG A , et al. Porcine reproductive and respiratory syndrome virus (PRRSV): pathogenesis and interaction with the immune system[J]. Annu Rev Anim Biosci, 2016, 4, 129- 154.
doi: 10.1146/annurev-animal-022114-111025 |
7 | NAUWYNCK H J , DUAN X , FAVOREEL H W , et al. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis[J]. J Gen Virol, 1999, 80 (2): 297- 305. |
8 |
YANG Q , ZHANG Q , TANG J , et al. Lipid rafts both in cellular membrane and viral envelope are critical for PRRSV efficient infection[J]. Virology, 2015, 484, 170- 180.
doi: 10.3760/cma.j.issn.1673-4092.2015.z1.086 |
9 | WEI X , LI R , QIAO S L , et al. Porcine reproductive and respiratory syndrome virus utilizes viral apoptotic mimicry as an alternative pathway to infect host cells[J]. J Virol, 2020, 94 (17): e00709- 20. |
10 |
HOU J , LI R , QIAO S L , et al. Elastase-mediated membrane fusion of highly pathogenic porcine reproductive and respiratory syndrome virus at host cell surface[J]. Vet Microbiol, 2020, 250, 108851.
doi: 10.1016/j.vetmic.2020.108851 |
11 |
MA J , MA L L , YANG M T , et al. The function of the PRRSV-host interactions and their effects on viral replication and propagation in antiviral strategies[J]. Vaccines (Basel), 2021, 9 (4): 364.
doi: 10.3390/vaccines9040364 |
12 |
ZHANG W , CHEN K R , ZHANG X Q , et al. An integrated analysis of membrane remodeling during porcine reproductive and respiratory syndrome virus replication and assembly[J]. PLoS One, 2018, 13 (7): e0200919.
doi: 10.1371/journal.pone.0200919 |
13 |
WOOTTON S K , YOO D . Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages[J]. J Virol, 2003, 77 (8): 4546- 4557.
doi: 10.1128/JVI.77.8.4546-4557.2003 |
14 |
BELLO-ONAGHISE G , WANG G , HAN X , et al. Antiviral strategies of Chinese herbal medicine against PRRSV infection[J]. Front Microbiol, 2020, 11, 1756.
doi: 10.3389/fmicb.2020.01756 |
15 | GUO C H , ZHU Z B , GUO Y , et al. Heparanase upregulation contributes to porcine reproductive and respiratory syndrome virus release[J]. J Virol, 2017, 91 (15): e00625- 17. |
16 | WANG T , FANG L R , ZHAO F W , et al. Exosomes mediate intercellular transmission of porcine reproductive and respiratory syndrome virus[J]. J Virol, 2018, 92 (4): e01734- 17. |
17 |
GUO R , KATZ B B , TOMICH J M , et al. Porcine reproductive and respiratory syndrome virus utilizes nanotubes for intercellular spread[J]. J Virol, 2016, 90 (10): 5163- 5175.
doi: 10.1128/JVI.00036-16 |
18 |
DELPUTTE P L , VANDERHEIJDEN N , NAUWYNCK H J , et al. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages[J]. J Virol, 2002, 76 (9): 4312- 4320.
doi: 10.1128/JVI.76.9.4312-4320.2002 |
19 |
VAN BREEDAM W , VAN GORP H , ZHANG J Q , et al. The M/GP5 glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner[J]. PLoS Pathog, 2010, 6 (1): e1000730.
doi: 10.1371/journal.ppat.1000730 |
20 | 秦梦梦. 猪CD169分子单克隆抗体制备及CD169在PRRSV感染中作用机制初探[D]. 杨凌: 西北农林科技大学, 2022. |
QIN M M. Preparation of porcine CD169 monoclonal antibody and preliminary study on the mechanism of CD169 in PRRSV infection[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
21 |
DAS P B , DINH P X , ANSARI I H , et al. The minor envelope glycoproteins GP2a and GP4 of porcine reproductive and respiratory syndrome virus interact with the receptor CD163[J]. J Virol, 2010, 84 (4): 1731- 1740.
doi: 10.1128/JVI.01774-09 |
22 |
HOU G P , XUE B Y , LI L L , et al. Direct interaction between CD163 N-terminal domain and MYH9 C-terminal domain contributes to porcine reproductive and respiratory syndrome virus internalization by permissive cells[J]. Front Microbiol, 2019, 10, 1815.
doi: 10.3389/fmicb.2019.01815 |
23 |
GAO J M , XIAO S Q , XIAO Y H , et al. MYH9 is an essential factor for porcine reproductive and respiratory syndrome virus infection[J]. Sci Rep, 2016, 6 (1): 25120.
doi: 10.1038/srep25120 |
24 |
SONG T , FANG L R , WANG D , et al. Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin[J]. J Proteomics, 2016, 142, 70- 81.
doi: 10.1016/j.jprot.2016.05.009 |
25 |
LIANG Z P , LI P J , WANG C P , et al. Visualizing the transport of porcine reproductive and respiratory syndrome virus in live cells by quantum dots-based single virus tracking[J]. Virol Sin, 2020, 35 (4): 407- 416.
doi: 10.1007/s12250-019-00187-0 |
26 |
WANG L , LI R , GENG R , et al. Heat shock protein member 8 (HSPA8) is involved in porcine reproductive and respiratory syndrome virus attachment and internalization[J]. Microbiol Spectr, 2022, 10 (1): e0186021.
doi: 10.1128/spectrum.01860-21 |
27 |
WANG R , WANG X , WU J Q , et al. Efficient porcine reproductive and respiratory syndrome virus entry in MARC-145 cells requires EGFR-PI3K-AKT-LIMK1-COFILIN signaling pathway[J]. Virus Res, 2016, 225, 23- 32.
doi: 10.1016/j.virusres.2016.09.005 |
28 |
WANG R , WANG X , NI B , et al. Syndecan-4, a PRRSV attachment factor, mediates PRRSV entry through its interaction with EGFR[J]. Biochem Biophys Res Commun, 2016, 475 (2): 230- 237.
doi: 10.1016/j.bbrc.2016.05.084 |
29 |
SHANMUKHAPPA K , KIM J K , KAPIL S . Role of CD151, A tetraspanin, in porcine reproductive and respiratory syndrome virus infection[J]. Virol J, 2007, 4 (1): 62.
doi: 10.1186/1743-422X-4-62 |
30 |
HUANG Y W , DRYMAN B A , LI W , et al. Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics[J]. Dev Comp Immunol, 2009, 33 (4): 464- 480.
doi: 10.1016/j.dci.2008.09.010 |
31 |
XIE J X , CHRISTIAENS I , YANG B , et al. Preferential use of Siglec-1 or Siglec-10 by type 1 and type 2 PRRSV strains to infect PK15S1-CD163 and PK15S10-CD163 cells[J]. Vet Res, 2018, 49 (1): 67.
doi: 10.1186/s13567-018-0569-z |
32 |
DU Y J , PATTNAIK A K , SONG C , et al. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts[J]. Virology, 2012, 424 (1): 18- 32.
doi: 10.1016/j.virol.2011.12.009 |
33 |
SU C M , ROWLAND R R R , YOO D . Recent advances in PRRS virus receptors and the targeting of receptor-ligand for control[J]. Vaccines (Basel), 2021, 9 (4): 354.
doi: 10.3390/vaccines9040354 |
34 |
XU H L , LIU Z H , ZHENG S Y , et al. CD163 antibodies inhibit PRRSV infection via receptor blocking and transcription suppression[J]. Vaccines (Basel), 2020, 8 (4): 592.
doi: 10.3390/vaccines8040592 |
35 |
DENG Z F , ZHANG S K , SUN M Q , et al. Nanobodies against porcine CD163 as PRRSV broad inhibitor[J]. Int J Biol Macromol, 2023, 253, 127493.
doi: 10.1016/j.ijbiomac.2023.127493 |
36 |
ZHU J Q , HE X , BERNARD D , et al. Identification of new compounds against PRRSV infection by directly targeting CD163[J]. J Virol, 2023, 97 (5): e0005423.
doi: 10.1128/jvi.00054-23 |
37 |
BURKARD C , LILLICO S G , REID E , et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13 (2): e1006206.
doi: 10.1371/journal.ppat.1006206 |
38 | XU K , ZHOU Y R , SHANG H T , et al. Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J]. J Integr Agric, 2023, 22 (7): 2188- 2199. |
39 |
STOIAN A M M , ROWLAND R R R , BRANDARIZ-NUÑEZ A . Identification of CD163 regions that are required for porcine reproductive and respiratory syndrome virus (PRRSV) infection but not for binding to viral envelope glycoproteins[J]. Virology, 2022, 574, 71- 83.
doi: 10.1016/j.virol.2022.07.012 |
40 |
SALGADO B , RIVAS R B , PINTO D , et al. Genetically modified pigs lacking CD163 PSTII-domain-coding exon 13 are completely resistant to PRRSV infection[J]. Antivir Res, 2024, 221, 105793.
doi: 10.1016/j.antiviral.2024.105793 |
41 |
LI L L , SUN W Y , HU Q F , et al. Identification of MYH9 key domain involved in the entry of PRRSV into permissive cells[J]. Front Microbiol, 2022, 13, 865343.
doi: 10.3389/fmicb.2022.865343 |
42 |
LEE W S , WHEATLEY A K , KENT S J , et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J]. Nat Microbiol, 2020, 5 (10): 1185- 1191.
doi: 10.1038/s41564-020-00789-5 |
43 |
YOON K J , WU L L , ZIMMERMAN J J , et al. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs[J]. Viral Immunol, 1996, 9 (1): 51- 63.
doi: 10.1089/vim.1996.9.51 |
44 |
SHI P D , SU Y X , LI Y , et al. The alternatively spliced porcine FcγRI regulated PRRSV-ADE infection and proinflammatory cytokine production[J]. Dev Comp Immunol, 2019, 90, 186- 198.
doi: 10.1016/j.dci.2018.09.019 |
45 |
QIAO S L , JIANG Z Z , TIAN X H , et al. Porcine FcγRIIb mediates enhancement of porcine reproductive and respiratory syndrome virus (PRRSV) infection[J]. PLoS One, 2011, 6 (12): e28721.
doi: 10.1371/journal.pone.0028721 |
46 | GU W H , GUO L J , YU H D , et al. Involvement of CD16 in antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection[J]. J Gen Virol, 2015, 96 (Pt 7): 1712- 1722. |
47 | 张留君, 师瑞龙, 王焕弟, 等. Sn受体N端V-set结构域和CD163受体SRCR5结构域在PRRSV-ADE感染中的作用[J]. 中国兽医学报, 2022, 42 (12): 2458- 2463. |
ZHANG L J , SHI R L , WANG H D , et al. Roles of N-terminal V-set domain of Sn receptor and SRCR5 domain of CD163 receptor in PRRSV-ADE infection[J]. Chinese Journal of Veterinary Science, 2022, 42 (12): 2458- 2463. | |
48 | 张峥, 孙雨晨, 范阔海, 等. PAMs免疫粘附受体CR 1-like对PRRSV感染的影响[J]. 山西农业大学学报: 自然科学版, 2023, 43 (2): 100- 110. |
ZHANG Z , SUN Y C , FAN K H , et al. Effects of porcine alveolar macrophages immune adhesive receptor CR1-like on PRRSV infection[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2023, 43 (2): 100- 110. | |
49 | HOU J , LI R , QIAO S L , et al. Glycoprotein 5 is cleaved by cathepsin E during porcine reproductive and respiratory syndrome virus membrane fusion[J]. J Virol, 2020, 94 (10): e00097- 20. |
50 | SONG J W , GAO P , KONG C , et al. The nsp2 hypervariable region of porcine reproductive and respiratory syndrome virus strain JXwn06 is associated with viral cellular tropism to primary porcine alveolar macrophages[J]. J Virol, 2019, 93 (24): e01436- 19. |
51 | ZHANG A K , DUAN H , ZHAO H J , et al. Interferon-induced transmembrane protein 3 is a virus-associated protein which suppresses porcine reproductive and respiratory syndrome virus replication by blocking viral membrane fusion[J]. J Virol, 2020, 94 (24): e01350- 20. |
52 |
MISINZO G M , DELPUTTE P L , NAUWYNCK H J . Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages[J]. Vet Res, 2008, 39 (6): 55.
doi: 10.1051/vetres:2008031 |
53 |
YU P , WEI R P , DONG W J , et al. CD163ΔSRCR5 MARC-145 cells resist PRRSV-2 infection via inhibiting virus uncoating, which requires the interaction of CD163 with calpain 1[J]. Front Microbiol, 2020, 10, 3115.
doi: 10.3389/fmicb.2019.03115 |
54 |
WIßING M H , BRVGGEMANN Y , STEINMANN E , et al. Virus-host cell interplay during hepatitis E virus infection[J]. Trends Microbiol, 2021, 29 (4): 309- 319.
doi: 10.1016/j.tim.2020.07.002 |
55 |
WANG X , CHEN Y W , QI C Y , et al. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles[J]. Front Immunol, 2024, 15, 1340332.
doi: 10.3389/fimmu.2024.1340332 |
56 |
NAN H , LAN J X , TIAN M M , et al. The network of interactions among porcine reproductive and respiratory syndrome virus non-structural proteins[J]. Front Microbiol, 2018, 9, 970.
doi: 10.3389/fmicb.2018.00970 |
57 |
ZHAO S S , QIAN Q S , CHEN X X , et al. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication[J]. J Virol, 2024, 98 (2): e0184223.
doi: 10.1128/jvi.01842-23 |
58 |
V'KOVSKI P , GERBER M , KELLY J , et al. Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling[J]. eLife, 2019, 8, e42037.
doi: 10.7554/eLife.42037 |
59 |
FANG P X , XIE C B , PAN T , et al. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication[J]. Nucleic Acids Res, 2023, 51 (19): 10752- 10767.
doi: 10.1093/nar/gkad759 |
60 |
ZHAO S C , GE X N , WANG X L , et al. The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro[J]. Virus Res, 2015, 195, 217- 224.
doi: 10.1016/j.virusres.2014.10.021 |
61 |
LI J , WANG D , FANG P X , et al. DEAD-box RNA helicase 21 (DDX21) positively regulates the replication of porcine reproductive and respiratory syndrome virus via multiple mechanisms[J]. Viruses, 2022, 14 (3): 467.
doi: 10.3390/v14030467 |
62 |
LIU L , TIAN J , NAN H , et al. Porcine reproductive and respiratory syndrome virus nucleocapsid protein interacts with Nsp9 and cellular DHX9 to regulate viral RNA synthesis[J]. J Virol, 2016, 90 (11): 5384- 5398.
doi: 10.1128/JVI.03216-15 |
63 |
BEURA L K , DINH P X , OSORIO F A , et al. Cellular poly(C) binding proteins 1 and 2 interact with porcine reproductive and respiratory syndrome virus nonstructural protein 1β and support viral replication[J]. J Virol, 2011, 85 (24): 12939- 12949.
doi: 10.1128/JVI.05177-11 |
64 |
ZHANG A G , SUN Y T , JING H Y , et al. Interaction of HnRNP F with the guanine-rich segments in viral antigenomic RNA enhances porcine reproductive and respiratory syndrome virus-2 replication[J]. Virol J, 2022, 19 (1): 82.
doi: 10.1186/s12985-022-01811-4 |
65 |
SONG Y N , GUO Y Y , LI X Y , et al. RBM39 alters phosphorylation of c-Jun and binds to viral RNA to promote PRRSV proliferation[J]. Front Immunol, 2021, 12, 664417.
doi: 10.3389/fimmu.2021.664417 |
66 |
WANG X Y , BAI J , ZHANG L L , et al. Poly (A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication[J]. Antivir Res, 2012, 96 (3): 315- 323.
doi: 10.1016/j.antiviral.2012.09.004 |
67 |
GAO P , CHAI Y , SONG J W , et al. Reprogramming the unfolded protein response for replication by porcine reproductive and respiratory syndrome virus[J]. PLoS Pathog, 2019, 15 (11): e1008169.
doi: 10.1371/journal.ppat.1008169 |
68 |
ZHENG Z F , FU X L , LING X , et al. Host cells actively resist porcine reproductive and respiratory syndrome virus infection via the IRF8-MicroRNA-10a-SRP14 regulatory pathway[J]. J Virol, 2022, 96 (7): e0000322.
doi: 10.1128/jvi.00003-22 |
69 |
GAO J T , XIAO S Q , LIU X H , et al. Inhibition of HSP70 reduces porcine reproductive and respiratory syndrome virus replication in vitro[J]. BMC Microbiol, 2014, 14, 64.
doi: 10.1186/1471-2180-14-64 |
70 |
SONG C H , LIU H Z , CAO Z , et al. HSP27 interacts with nonstructural proteins of porcine reproductive and respiratory syndrome virus and promotes viral replication[J]. Pathogens, 2023, 12 (1): 91.
doi: 10.3390/pathogens12010091 |
71 |
DONG S , LIU L , WU W N , et al. Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication[J]. J Proteomics, 2016, 146, 58- 69.
doi: 10.1016/j.jprot.2016.06.019 |
72 |
CHANG X B , YANG Y Q , GAO J C , et al. Annexin A2 binds to vimentin and contributes to porcine reproductive and respiratory syndrome virus multiplication[J]. Vet Res, 2018, 49 (1): 75.
doi: 10.1186/s13567-018-0571-5 |
73 |
WANG Q M , YI H Y , GUO Y C , et al. PCNA promotes PRRSV replication by increasing the synthesis of viral genome[J]. Vet Microbiol, 2023, 281, 109741.
doi: 10.1016/j.vetmic.2023.109741 |
74 |
WANG M D , YANG L , MENG J J , et al. Functionally active cyclin-dependent kinase 9 is essential for porcine reproductive and respiratory syndrome virus subgenomic RNA synthesis[J]. Mol Immunol, 2021, 135, 351- 364.
doi: 10.1016/j.molimm.2021.05.004 |
75 |
ZHANG L , PAN Y , XU Y F , et al. Paraoxonase-1 facilitates PRRSV replication by interacting with viral nonstructural protein-9 and inhibiting type I interferon pathway[J]. Viruses, 2022, 14 (6): 1203.
doi: 10.3390/v14061203 |
76 |
ZHU Z B , XU Y Q , CHEN L L , et al. Bergamottin inhibits PRRSV replication by blocking viral non-structural proteins expression and viral RNA synthesis[J]. Viruses, 2023, 15 (6): 1367.
doi: 10.3390/v15061367 |
77 | SONG J W , LIU Y Y , GAO P , et al. Mapping the nonstructural protein interaction network of porcine reproductive and respiratory syndrome virus[J]. J Virol, 2018, 92 (24): e01112- 18. |
78 | SHA H Y , ZHANG H , CHEN Y , et al. Research progress on the NSP9 protein of porcine reproductive and respiratory syndrome virus[J]. Front Vet Sci, 2022, 9, 872205. |
79 |
LI G , ZHENG Y J , LUO Q , et al. Research progress on the NSP10 protein of porcine reproductive and respiratory syndrome virus[J]. Microorganisms, 2024, 12 (3): 553.
doi: 10.3390/microorganisms12030553 |
80 | ZHENG Y J , ZHANG H , LUO Q , et al. Research progress on NSP11 of porcine reproductive and respiratory syndrome virus[J]. Vet Sci, 2023, 10 (7): 451. |
81 |
WANG T Y , FANG Q Q , CONG F , et al. The Nsp12-coding region of type 2 PRRSV is required for viral subgenomic mRNA synthesis[J]. Emerg Microbes Infect, 2019, 8 (1): 1501- 1510.
doi: 10.1080/22221751.2019.1679010 |
82 |
DENG H , XIN N , ZENG F C , et al. A novel amino acid site of N protein could affect the PRRSV-2 replication by regulating the viral RNA transcription[J]. BMC Vet Res, 2022, 18 (1): 171.
doi: 10.1186/s12917-022-03274-9 |
83 |
ISELIN L , PALMALUX N , KAMEL W , et al. Uncovering viral RNA-host cell interactions on a proteome-wide scale[J]. Trends Biochem Sci, 2022, 47 (1): 23- 38.
doi: 10.1016/j.tibs.2021.08.002 |
84 |
ROZMAN B , FISHER T , STERN-GINOSSAR N . Translation-a tug of war during viral infection[J]. Mol cell, 2023, 83 (3): 481- 495.
doi: 10.1016/j.molcel.2022.10.012 |
85 | 李洋. PRRSV调控细胞翻译和自噬的机制研究[D]. 武汉: 华中农业大学, 2020. |
LI Y. The mechanism of PRRSV regulating cell translation and autophagy[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese) | |
86 |
WEI R P , ZHANG X X , WANG X Y , et al. PDCD4 restricts PRRSV replication in an eIF4A-dependent manner and is antagonized by the viral nonstructural protein 9[J]. J Virol, 2024, 98 (5): e0006024.
doi: 10.1128/jvi.00060-24 |
87 | 李华玮, 王旭英, 乔宏兴, 等. 慢病毒载体介导的稳定表达eIF5A细胞系的建立及其对猪繁殖与呼吸综合征病毒增殖的影响[J]. 畜牧兽医学报, 2023, 54 (3): 1169- 1176. |
LI H W , WANG X Y , QIAO H X , et al. Establishment of a lentiviral vector-mediated stable expression of eIF5A cell line and its effect on porcine reproductive and respiratory syndrome virus propagation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (3): 1169- 1176. | |
88 | 李华玮, 王旭英, 井汇源, 等. eIF5A基因敲除MARC-145多克隆细胞系的建立及其对PRRSV增殖的影响[J]. 中国农业大学学报, 2023, 28 (7): 122- 129. |
LI H W , WANG X Y , JING H Y , et al. Establishment of eIF5A gene knockout polyclonal MARC-145 cell line and its effect on PRRSV infection[J]. Journal of China Agricultural University, 2023, 28 (7): 122- 129. | |
89 |
YOO D , WOOTTON S K , LI G , et al. Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin[J]. J Virol, 2003, 77 (22): 12173- 12183.
doi: 10.1128/JVI.77.22.12173-12183.2003 |
90 | KE H Z , HAN M Y , KIM J , et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 1 beta interacts with nucleoporin 62 to promote viral replication and immune evasion[J]. J Virol, 2019, 93 (14): e00469- 19. |
91 |
殷杰, 赵永祥, 薛江东, 等. 核糖体蛋白L12(RPL12)在猪繁殖与呼吸综合征病毒复制中的作用[J]. 江苏农业学报, 2021, 37 (3)
doi: 10.3969/j.issn.1000-4440.2021.03.017 |
YIN J , ZHAO Y X , XUE J D , et al. Role of ribosomal protein L12 (RPL12) in porcine reproductive and respiratory syndrome virus replication[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37 (3): 686- 693.
doi: 10.3969/j.issn.1000-4440.2021.03.017 |
|
92 | KUMAR R , MEHTA D , MISHRA N , et al. Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis[J]. Int J Mol Sci, 2020, 22 (1): 323. |
93 |
ZHAO P D , JING H Y , DONG W , et al. TRIM26-mediated degradation of nucleocapsid protein limits porcine reproductive and respiratory syndrome virus-2 infection[J]. Virus Res, 2022, 311, 198690.
doi: 10.1016/j.virusres.2022.198690 |
94 |
BAI Y Z , LI L W , SHAN T L , et al. Proteasomal degradation of nonstructural protein 12 by RNF114 suppresses porcine reproductive and respiratory syndrome virus replication[J]. Vet Microbiol, 2020, 246, 108746.
doi: 10.1016/j.vetmic.2020.108746 |
95 | CHEN J , ZHAO S J , CUI Z Y , et al. MicroRNA-376b-3p promotes porcine reproductive and respiratory syndrome virus replication by targeting viral restriction factor TRIM22[J]. J Virol, 2022, 96 (2): e01597- 21. |
96 |
CUI Z Y , ZHOU L K , ZHAO S J , et al. The host E3-ubiquitin ligase TRIM28 impedes viral protein GP4 ubiquitination and promotes prrsv replication[J]. Int J Mol Sci, 2023, 24 (13): 10965.
doi: 10.3390/ijms241310965 |
97 |
GUO R , YAN X Y , LI Y H , et al. A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny[J]. PLoS Pathog, 2021, 17 (3): e1009403.
doi: 10.1371/journal.ppat.1009403 |
98 |
LI R Q , CHEN C , HE J , et al. E3 ligase ASB8 promotes porcine reproductive and respiratory syndrome virus proliferation by stabilizing the viral Nsp1α protein and degrading host IKKβ kinase[J]. Virology, 2019, 532, 55- 68.
doi: 10.1016/j.virol.2019.04.004 |
99 | LI X Y , SUN R Q , GUO Y Y , et al. N-acetyltransferase 9 inhibits porcine reproductive and respiratory syndrome virus proliferation by N-terminal acetylation of the structural protein GP5[J]. Microbiol Spectr, 2022, 11 (1): e02442- 22. |
100 |
易和友, 于之清, 陈耀, 等. N蛋白磷酸化位点突变影响猪繁殖与呼吸综合征病毒的复制及亚基因组的转录[J]. 畜牧兽医学报, 2019, 50 (12): 2470- 2478.
doi: 10.11843/j.issn.0366-6964.2019.12.011 |
YI H Y , YU Z Q , CHEN Y , et al. Mutation of N protein phosphorylation site affects replication and subgenomic transcription of porcine reproductive and respiratory syndrome virus[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (12): 2470- 2478.
doi: 10.11843/j.issn.0366-6964.2019.12.011 |
|
101 |
SHANG P C , YUAN F F , MISRA S , et al. Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus[J]. Virology, 2020, 543, 63- 75.
doi: 10.1016/j.virol.2020.01.018 |
102 |
DAS P B , VU H L X , DINH P X , et al. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response[J]. Virology, 2011, 410 (2): 385- 394.
doi: 10.1016/j.virol.2010.12.002 |
103 | RUPASINGHE R , LEE K , LIU X , et al. Molecular evolution of porcine reproductive and respiratory syndrome virus field strains from two swine production systems in the Midwestern United States from 2001 to 2020[J]. Microbiol Spectr, 2022, 10 (3): e0263421. |
104 |
ZHANG M Z , HAN X L , OSTERRIEDER K , et al. Palmitoylation of the envelope membrane proteins GP5 and M of porcine reproductive and respiratory syndrome virus is essential for virus growth[J]. PLoS Pathog, 2021, 17 (4): e1009554.
doi: 10.1371/journal.ppat.1009554 |
105 | ZHENG Z F , LING X , LI Y , et al. Host cells reprogram lipid droplet synthesis through YY1 to resist PRRSV infection[J]. mBio, 2024, 15 (8): e01549- 24. |
106 |
LAVAL T , OUIMET M . A role for lipophagy in atherosclerosis[J]. Nat Rev Cardiol, 2023, 20 (7): 431- 432.
doi: 10.1038/s41569-023-00885-z |
107 |
LI G L , HAN Y Q , SU B Q , et al. Porcine reproductive and respiratory syndrome virus 2 hijacks CMA-mediated lipolysis through upregulation of small GTPase RAB18[J]. PLoS Pathog, 2024, 20 (4): e1012123.
doi: 10.1371/journal.ppat.1012123 |
108 | WANG J , LIU J Y , SHAO K Y , et al. Porcine reproductive and respiratory syndrome virus activates lipophagy to facilitate viral replication through downregulation of NDRG1 expression[J]. J Virol, 2019, 93 (17): e00526- 19. |
109 | YU P W , FU P F , ZENG L , et al. EGCG restricts PRRSV proliferation by disturbing lipid metabolism[J]. Microbiol Spectr, 2022, 10 (2): e02276- 21. |
110 |
DAI J , FENG Y Y , LIAO Y , et al. ESCRT machinery and virus infection[J]. Antiviral Res, 2024, 221, 105786.
doi: 10.1016/j.antiviral.2023.105786 |
111 | ZHANG L X , LI R , GENG R , et al. Tumor susceptibility gene 101 (TSG101) contributes to virion formation of porcine reproductive and respiratory syndrome virus via interaction with the nucleocapsid (N) protein along with the early secretory pathway[J]. J Virol, 2022, 96 (6): e00005- 22. |
112 |
WARREN C J , YU S Q , PETERS D K , et al. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans[J]. Cell, 2022, 185 (21): 3980- 3991. e18.
doi: 10.1016/j.cell.2022.09.022 |
113 |
DU T F , NAN Y C , XIAO S Q , et al. Antiviral strategies against PRRSV infection[J]. Trends Microbiol, 2017, 25 (12): 968- 979.
doi: 10.1016/j.tim.2017.06.001 |
114 |
TANG H P , GAO Y , HAN J Y . Application progress of the single domain antibody in medicine[J]. Int J Mol Sci, 2023, 24 (4): 4176.
doi: 10.3390/ijms24044176 |
115 |
DE VLIEGER D , BALLEGEER M , ROSSEY I , et al. Single-domain antibodies and their formatting to combat viral infections[J]. Antibodies (Basel), 2018, 8 (1): 1.
doi: 10.3390/antib8010001 |
116 |
BUTHELEZI L A , PILLAY S , NTULI N N , et al. Antisense therapy for infectious diseases[J]. Cells, 2023, 12 (16): 2119.
doi: 10.3390/cells12162119 |
117 |
HAN X , FAN S M , PATEL D , et al. Enhanced inhibition of porcine reproductive and respiratory syndrome virus replication by combination of morpholino oligomers[J]. Antiviral Res, 2009, 82 (1): 59- 66.
doi: 10.1016/j.antiviral.2009.01.009 |
118 |
OPRIESSNIG T , PATEL D , WANG R , et al. Inhibition of porcine reproductive and respiratory syndrome virus infection in piglets by a peptide-conjugated morpholino oligomer[J]. Antiviral Res, 2011, 91 (1): 36- 42.
doi: 10.1016/j.antiviral.2011.04.012 |
119 |
REN J H , DUAN H , DONG H X , et al. TAT nanobody exerts antiviral effect against PRRSV in vitro by targeting viral nucleocapsid protein[J]. Int J Mol Sci, 2023, 24 (3): 1905.
doi: 10.3390/ijms24031905 |
120 |
DUAN H , CHEN X , ZHANG Z W , et al. A nanobody inhibiting porcine reproductive and respiratory syndrome virus replication via blocking self-interaction of viral nucleocapsid protein[J]. J Virol, 2024, 98 (1): e0131923.
doi: 10.1128/jvi.01319-23 |
[1] | 杨程, 刘野, 程宁, 王凯月, 李欣蕾, 孙久英, 韩俊平, 李文军, 王欢欢, 邵笑, 程雪娇, 孙英峰. 一株PRRSV-2谱系1.8与1.5重组毒株的基因组特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3570-3578. |
[2] | 荆扬, 王玉淼, 李洋, 常辉, 马志倩, 李志伟, 肖书奇. 稳定表达PRRSV M蛋白的MARC-145ORF6细胞系的构建及其对PRRSV增殖的影响[J]. 畜牧兽医学报, 2024, 55(3): 1159-1169. |
[3] | 梁国濠, 胡丹丹, 钟海文, 张健, 杨德鸿, 吴珍芳, 杨化强, 张献伟. CD163基因敲除猪对胸膜肺炎放线杆菌、猪链球菌和副猪嗜血杆菌的易感性研究[J]. 畜牧兽医学报, 2024, 55(12): 5478-5488. |
[4] | 宋雯妍, 张瀚文, 吴澳迪, 张丽燕, 刘照, 叶桐桐, 陈创夫, 盛金良. 猪繁殖与呼吸综合征病毒GP5蛋白纳米抗体的筛选及其对病毒复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(1): 258-270. |
[5] | 王志远, 刘博奇, 许志颖, 徐思佳, 邢家宝, 张桂红, 王衡, 孙彦阔. 2021—2022年我国部分地区猪繁殖与呼吸综合征病毒ORF5基因变异分析[J]. 畜牧兽医学报, 2023, 54(9): 3812-3823. |
[6] | 王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138. |
[7] | 袁丽, 孙杨杨, 张路捷, 张杰, 孙海凤, 白娟, 姜平. 猪繁殖与呼吸综合征病毒GP3蛋白单克隆抗体制备及抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(8): 3424-3434. |
[8] | 陈松彪, 尚珂, 杜付熙, 余祖华, 李静, 贾艳艳, 廖成水, 张春杰, 丁轲, 程相朝. 沙门菌VI型分泌系统组装、结构特征和分泌调控网络的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2252-2263. |
[9] | 刘建奎, 徐叶, 刘辰, 于慧, 杨圆, 何乐, 李佳睿, 但惠娟, 戴爱玲, 杨小燕, 魏春华. 基于全基因组分析2017—2021年福建省猪繁殖与呼吸综合征病毒基因组特征[J]. 畜牧兽医学报, 2023, 54(4): 1579-1589. |
[10] | 李倬伟, 王方, 王君君, 陈祯涵, 李焕荣, 周双海, 刘雪威. 双香豆素对猪繁殖与呼吸综合征病毒的体外抑制作用[J]. 畜牧兽医学报, 2023, 54(3): 1160-1168. |
[11] | 李华玮, 王旭英, 乔宏兴, 李新锋, 姬向波, 郭科威, 杨中元. 慢病毒载体介导的稳定表达eIF5A细胞系的建立及其对猪繁殖与呼吸综合征病毒增殖的影响[J]. 畜牧兽医学报, 2023, 54(3): 1169-1176. |
[12] | 周立坤, 董鑫媛, 李家辉, 崔志莹, 赵士杰, 徐婕, 陈静, 张宜娜, 夏平安. MID2对猪繁殖与呼吸综合征病毒复制的调控作用[J]. 畜牧兽医学报, 2023, 54(11): 4735-4744. |
[13] | 王君君, 宋慧敏, 李倬伟, 姜平, 周双海, 李焕荣, 刘雪威. 猪繁殖与呼吸综合征病毒N蛋白与核糖体蛋白S20相互作用对病毒复制的影响[J]. 畜牧兽医学报, 2023, 54(1): 293-303. |
[14] | 肖克, 陈婷, 赵其平, 朱顺海, 董辉, 刘曼玉, 于钰, 黄兵, 韩红玉. 柔嫩艾美耳球虫含HD结构域蛋白特性和功能初步研究[J]. 畜牧兽医学报, 2022, 53(8): 2608-2620. |
[15] | 李晨, 邱存义, 冯逸雪, 韩力康, 杜连昭, 王茜茜, 马欣, 李瑞香, 王兴龙. 参虎败毒颗粒体内抗猪繁殖与呼吸综合征病毒的效果观察[J]. 畜牧兽医学报, 2021, 52(8): 2344-2353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||