

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6116-6129.doi: 10.11843/j.issn.0366-6964.2025.12.016
孔令锋1,2(
), 朱丽君1,2, 厉彦浩1,2, 彭玉薇1,2, 寇富民1,2, 李亮3,*(
), 刘书东1,2,*(
)
收稿日期:2025-05-06
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
李亮,刘书东
E-mail:1027223848@qq.com;285247786@qq.com;liushudong63@126.com
作者简介:孔令锋(2001-),男,河南邓州人,硕士生,主要从事动物遗传与育种研究,E-mail: 1027223848@qq.com
基金资助:
KONG Lingfeng1,2(
), ZHU Lijun1,2, LI Yanhao1,2, PENG Yuwei1,2, KOU Fumin1,2, LI Liang3,*(
), LIU Shudong1,2,*(
)
Received:2025-05-06
Online:2025-12-23
Published:2025-12-24
Contact:
LI Liang, LIU Shudong
E-mail:1027223848@qq.com;285247786@qq.com;liushudong63@126.com
摘要:
旨在挖掘绵羊中与优异性状相关基因,对遗传改良与育种实践具有重要价值。本研究以93只策勒黑羊、33只皮山红羊和13只瓦格吉尔羊为对象,进行颈静脉采血、DNA提取、基因分型。用PLINK软件对基因型数据进行质量控制(质控标准为:剔除个体检出率小于90%、SNP检出率小于95%、最小等位基因频率小于5%、哈代温伯格平衡P < 1×10-6的SNPs)和主成分分析(PCA),构建进化树、群体祖先成分分析和连锁不平衡分析(LD),同时基于全基因组长纯合片段(runs of homozygosity, ROH)分析和群体遗传分化指数(FST)分析,选择前10%的ROH片段作为高频区域和FST值的前5%位点作为受选择区域,参考绵羊基因组Oar_v4.0注释基因并进行GO和KEGG分析。FST和FROH结果表明,3个群体之间遗传分化水平较低,且在K=4呈现清晰的遗传背景分化。同时识别出ACVR1、ACVR1C、UPP2、CRY1和NR4A2等是南疆地方绵羊品种在干旱沙漠环境中形成遗传适应性的候选基因。本研究通过群体遗传结构多样性和选择信号分析,揭示了南疆地方绵羊品种的遗传变异特征,从多维度的遗传变异视角寻找到相关优异基因,为绵羊种质资源保护、新品种培育及资源多样性提升提供了重要参考依据。
中图分类号:
孔令锋, 朱丽君, 厉彦浩, 彭玉薇, 寇富民, 李亮, 刘书东. 南疆地方绵羊品种群体遗传结构解析与选择信号挖掘[J]. 畜牧兽医学报, 2025, 56(12): 6116-6129.
KONG Lingfeng, ZHU Lijun, LI Yanhao, PENG Yuwei, KOU Fumin, LI Liang, LIU Shudong. Analysis of the Genetic Structure of Local Sheep Breed Populations in South Xinjiang and Mining of Selection Signals[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6116-6129.
表 1
候选基因统计表"
| 染色体 Chromosome | 位点 SNP | 开始位置/bp Start | 结束位置/bp End | 基因 Gene | 功能 Functionality |
| 2 | 150 789 074 | 150 771 782 | 150 827 796 | ACVR1 | 细胞分化、增殖和发育 |
| 2 | 151 043 304 | 151 006 414 | 151 059 864 | ACVR1C | 细胞生长、分化和凋亡 |
| 2 | 150 464 151 | 150 448 681 | 150 488 062 | UPP2 | 核酸(DNA和RNA)的合成与代谢 |
| 3 | 175 354 733 | 175 346 824 | 175 432 659 | CRY1 | 昼夜节律调控,控制生物钟 |
| 2 | 151 987 092 | 152 145 600 | 152 150 521 | NR4A2 | 神经系统发育和功能的基因表达 |
| 22 | 10 457 354 | 10 440 163 | 10 458 396 | FAS | 参与程序性细胞死亡,维持免疫系统平衡 |
| 13 | 77 752 092 | 77 752 054 | 77 755 968 | CEBPB | 免疫和炎症反应,细胞分化与增殖 |
| 6 | 70 220 482 | 70 189 729 | 70 234 609 | KIT | 造血干细胞和生殖细胞发育 |
| 1 | 197 830 345 | 197 828 371 | 197 840 091 | BCL6 | 调控B细胞发育和免疫反应 |
| 6 | 64 562 045 | 645 513 65 | 64 633 399 | GABRG1 | 参与脑内抑制性神经传递 |
| 13 | 52 472 749 | 52 472 620 | 52 474 694 | PDYN | 疼痛调制、应激反应相关 |
| 8 | 34 948 004 | 34 947 842 | 35 404 386 | GRIK2 | 神经系统功能相关 |
| 6 | 69 765 215 | 69 735 815 | 69 771 929 | PDGFRA | 细胞生长、分裂,胚胎发育和组织修复相关 |
| 15 | 4 102 698 | 3 849 041 | 4 129 967 | PDGFD | 细胞生长和血管生成 |
| 13 | 35 117 601 | 35 117 185 | 35 118 653 | BAMBI | 细胞生长分化、发育相关 |
| 6 | 70 601 487 | 70 562 534 | 70 607 422 | KDR | 血管生成、发育 |
| 1 |
ZHANG J , ZHANG C L , TUERSUNTUOHE M , et al. Population structure and selective signature of sheep around Tarim Basin[J]. Front Ecol Evol, 2023, 11, 1146561.
doi: 10.3389/fevo.2023.1146561 |
| 2 |
张成龙, 郑浪漫, 刘春洁, 等. 利用50K芯片解析和田羊和策勒黑羊的遗传规律[J]. 畜牧兽医学报, 2022, 53 (4): 1051- 1063.
doi: 10.11843/j.issn.0366-6964.2022.04.006 |
|
ZHANG C L , ZHENG L M , LIU C J , et al. Analysis of genetic law of Hetian and Qira Black sheep using Illumina Ovine SNP50 chip[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (4): 1051- 1063.
doi: 10.11843/j.issn.0366-6964.2022.04.006 |
|
| 3 | 石兰, 马梅兰, 木合塔帕·买买提江, 等. 基于全基因组重测序解析皮山红羊群体遗传结构及产羔数候选基因研究[J]. 中国畜牧兽医, 2024, 51 (2): 624- 638. |
| SHI L , MA M L , MUHETAPA M , et al. Study on the genetic structure and litter size candidate genes of Pishan Red sheep population based on whole genome resequencing[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (2): 624- 638. | |
| 4 |
ZHANG C L , ZHANG J , TUERSUNTUOHETI M , et al. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China[J]. Sci Total Environ, 2023, 904, 166698.
doi: 10.1016/j.scitotenv.2023.166698 |
| 5 |
KURKI M I , LAUKKANEN M , SOMMAILA M , et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613 (7944): 508- 518.
doi: 10.1038/s41586-022-05473-8 |
| 6 | FATMA R , CHAUHAN W , AFZAL M . The coefficients of inbreeding revealed by ROH study among inbred individuals belonging to each type of the first cousin marriage: A preliminary report from North India[J]. Genes Genomics, 2023, 45 (7): 813- 825. |
| 7 |
HAN Z P , ZHOU W , ZHANG L L , et al. Genetic diversity and runs of homozygosity analysis of Hetian sheep populations revealed by Illumina Ovine SNP50K BeadChip[J]. Front Ecol Evol, 2023, 11, 1182966.
doi: 10.3389/fevo.2023.1182966 |
| 8 | WEIR B S , COCKERHAM C C . Estimating F-statistics for the analysis of population structure[J]. Evolution, 1984, 38 (6): 1358- 1370. |
| 9 |
BHATIA G , PATTERSON N , SANKARAMAN S , et al. Estimating and interpreting FST: The impact of rare variants[J]. Genome Res, 23 (9): 1514- 1521.
doi: 10.1101/gr.154831.113 |
| 10 |
LI Y , LI X , HAN Z , et al. Population structure and selective signature analysis of local sheep breeds in Xinjiang, China based on high-density SNP chip[J]. Sci Rep, 2024, 14, 28133.
doi: 10.1038/s41598-024-76573-w |
| 11 |
WANG J , SUO J , YANG R , et al. Genetic diversity, population structure, and selective signature of sheep in the northeastern Tarim Basin[J]. Front Genet, 2023, 14, 1281601.
doi: 10.3389/fgene.2023.1281601 |
| 12 |
HAN Z P , YANG R Z , ZHOU W , et al. Population structure and selection signal analysis of indigenous sheep from the southern edge of the Taklamakan Desert[J]. BMC Genomics, 2024, 25, 681.
doi: 10.1186/s12864-024-10581-y |
| 13 |
YANG R , HAN Z , ZHOU W , et al. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip[J]. PeerJ, 2024, 12, e17980.
doi: 10.7717/peerj.17980 |
| 14 | 张莉. 绵羊肉用性状全基因组关联分析[D]. 北京: 中国农业科学院, 2013. |
| ZHANG L. Genome-wide association studies for growth and meat production traits in sheep[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) | |
| 15 | CHANG C C , CHOW C C , TELLIER L C A M , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4 (1): 7. |
| 16 |
XU L , HE W , TAI S , et al. VCF2Dis: an ultra-fast and efficient tool to calculate pairwise genetic distance and construct population phylogeny from VCF files[J]. Gigascience, 2025, 14, giaf032.
doi: 10.1093/gigascience/giaf032 |
| 17 |
ALEXANDER D H , NOVEMBER J , LANGE K . Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19 (9): 1655- 1664.
doi: 10.1101/gr.094052.109 |
| 18 | 申成凯, 刘坤, 刘伟良, 等. 白细胞介素1B基因连锁不平衡与原发性冻结肩的易感性[J]. 中国组织工程研究, 2024, 28 (27): 4367- 4372. |
| SHEN C K , LIU K , LIU W L , et al. Association between interleukin-1B gene linkage disequilibrium and susceptibility to primary frozen shoulder[J]. Chinese Journal of Tissue Engineering Research, 2024, 28 (27): 4367- 4372. | |
| 19 | ZHANG C , DONG S S , XU J Y , et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2018, 35 (10): 1786- 1789. |
| 20 |
LENCZ T , LAMBERT C , DEROSSE P , et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia[J]. Proc Natl Acad Sci U S A, 2007, 104 (50): 19942- 19947.
doi: 10.1073/pnas.0710021104 |
| 21 |
LEUTENEGGER A L , PRUM B , GENIN E , et al. Estimation of the inbreeding coefficient through use of genomic data[J]. Am J Hum Genet, 2003, 73 (3): 516- 523.
doi: 10.1086/378207 |
| 22 | 王利华, 张英萍, 邹桂伟, 等. 基于微卫星标记的中华鳖淮河品系遗传多样性分析[J]. 中国农学通报, 2020, 36 (23): 134- 141. |
| WANG L H , ZHANG Y P , ZOU G W , et al. Genetic diversity of huaihe strain of pelodiscus sinensis based on microsatellite arkers[J]. Chinese Agricultural Science Bulletin, 2020, 36 (23): 134- 141. | |
| 23 |
DANECEK P , AUTON A , ABECASIS G , et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330 |
| 24 |
ZHANG C L , ZHANG J H , TUERSUNTUOHETI M , et al. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip[J]. Sci Rep, 2024, 14, 22801.
doi: 10.1038/s41598-024-72846-6 |
| 25 |
WANJALA G , BAGI Z , GAVOJDIAN D , et al. Genetic diversity and adaptability of native sheep breeds from different climatic zones[J]. Sci Rep, 2025, 15, 14143.
doi: 10.1038/s41598-025-97931-2 |
| 26 |
HAN Z P , ZHANG L L , LI X P , et al. Single nucleotide polymorphism-based analysis of linkage disequilibrium and runs of homozygosity patterns of indigenous sheep in the southern Taklamakan desert[J]. BMC Genomics, 2025, 26, 267.
doi: 10.1186/s12864-025-11445-9 |
| 27 |
YENGO L , WRAY N R , VISSCHER P M . Extreme inbreeding in a European ancestry sample from the contemporary UK population[J]. Nat Commun, 2019, 10, 3719.
doi: 10.1038/s41467-019-11724-6 |
| 28 |
HALL S J . Genetic Differentiation among Livestock Breeds—Values for Fst[J]. Animals, 2022, 12 (9): 1115.
doi: 10.3390/ani12091115 |
| 29 | ZHANG J H , ZHANG C L , LI X P , et al. Genetic analysis of key agronomic traits of local sheep breeds in Xinjiang, China[J]. Int J Biol Macromol, 2024, 280 (4): 135869. |
| 30 |
ALBERTO F J , BOYER F , OROZCO-TERWENGEL P , et al. Convergent genomic signatures of domestication in sheep and goats[J]. Nat Commun, 2018, 9 (1): 1- 11.
doi: 10.1038/s41467-017-02088-w |
| 31 |
BAUMGARD L H , RHOADS R P JR . Effects of heat stress on postabsorptive metabolism and energetics[J]. Annu Rev Anim Biosci, 2013, 1, 311- 337.
doi: 10.1146/annurev-animal-031412-103644 |
| 32 |
KIM E S , ELBELTAGY A , ABOUL-NAGA A , et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment[J]. Heredity, 2016, 116 (3): 255- 264.
doi: 10.1038/hdy.2015.94 |
| 33 |
WEEMS P W , GOODMAN R L , LEHMAN M N . Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters[J]. Front Neuroendocrinol, 2015, 37, 43- 51.
doi: 10.1016/j.yfrne.2014.12.002 |
| 34 |
RIGUEUR D , BRUGGER S , ANBARCHIAN T , et al. The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development[J]. J Bone Miner Res, 2015, 30 (4): 733- 741.
doi: 10.1002/jbmr.2385 |
| 35 |
IBÁÑEZ C F . Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7[J]. Febs J, 2022, 289 (19): 5776- 5797.
doi: 10.1111/febs.16090 |
| 36 |
MASUKO R , YAMADA T , SUKEGAWA S , et al. Identification of TGFβ signaling pathway showing heat stress-responsive activation associated with heat stress tolerance for growth rate in small intestine of finishing pig[J]. Anim Genet, 2023, 51 (2): 49- 55.
doi: 10.5924/abgri.51.49 |
| 37 |
ZRENNER R , RIEGLER H , MARQUARD C R , et al. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis[J]. New Phytol, 2009, 183 (1): 117- 132.
doi: 10.1111/j.1469-8137.2009.02843.x |
| 38 |
ROOSILD T P , CASTRONOVO S , VILLOSO A , et al. A novel structural mechanism for redox regulation of uridine phosphorylase 2 activity[J]. J Struct Biol, 2011, 176 (2): 229- 237.
doi: 10.1016/j.jsb.2011.08.002 |
| 39 | 王玉杰, 谢鸣. 肝郁脾虚证大鼠模型肝脏的差异基因表达[J]. 中华中医药杂志, 2011, 26 (11): 2660- 2663. |
| WANG Y J , XIE M . Differential gene expression on syndrome model of stagnation of liver and deficiency of spleen in rats[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2001, 26 (11): 2660- 2663. | |
| 40 |
GRIFFIN E A JR , STAKNIS D , WEITZ C J . Light-independent role of CRY1 and CRY2 in the mammalian circadian clock[J]. Science, 1999, 286 (5440): 768- 771.
doi: 10.1126/science.286.5440.768 |
| 41 |
NAGASHIMA K , MATSUE K , KONISHI M , et al. The involvement of Cry1 and Cry2 genes in the regulation of the circadian body temperature rhythm in mice[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288 (1): 329- 335.
doi: 10.1152/ajpregu.00395.2004 |
| 42 |
MA D , LI X , GUO Y , et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proc Natl Acad Sci U S A, 2016, 113 (1): 224- 229.
doi: 10.1073/pnas.1511437113 |
| 43 |
RAVENEY B J , OKI S , YAMAMURA T . Nuclear receptor NR4A2 orchestrates Th17 cell-mediated autoimmune inflammation via IL-21 signalling[J]. PLoS One, 2013, 8 (2): e56595.
doi: 10.1371/journal.pone.0056595 |
| 44 |
MOK J , PARK J H , YEOM S C , et al. PROKR1-CREB-NR4A2 axis for oxidative muscle fiber specification and improvement of metabolic function[J]. Proc Natl Acad Sci U S A, 2024, 121 (4): e2308960121.
doi: 10.1073/pnas.2308960121 |
| 45 | WOO M S , BAL L C , WINSCHEL I , et al. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis[J]. J Clin Invest, 2024, 134 (16): e177692. 2. |
| 46 |
LI J , CHEN C , GAO L , et al. Analysis of histopathology and changes of major cytokines in the lesions caused by Mycoplasma ovipneumoniae infection[J]. BMC Vet Res, 2023, 19, 273.
doi: 10.1186/s12917-023-03829-4 |
| 47 |
郭海英, 沈文, 陈冬梅, 等. BPI蛋白对感染绵羊肺炎支原体的盘羊杂交羊细胞因子水平的影响[J]. 畜牧兽医学报, 2015, 46 (10): 1882- 1890.
doi: 10.11843/j.issn.0366-6964.2015.10.023 |
|
GUO H Y , SHEN W , CHEN D M , et al. The influence of BPI protein on cytokines level in argali hybrid sheep infected with mycoplasma ovipneumoniae[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (10): 1882- 1890.
doi: 10.11843/j.issn.0366-6964.2015.10.023 |
|
| 48 |
STRASSER A , JOST P J , NAGATA S . The many roles of FAS receptor signaling in the immune system[J]. Immunity, 2009, 30 (2): 180- 192.
doi: 10.1016/j.immuni.2009.01.001 |
| 49 | HUANG D M , LIU Y Q , LI D T , et al. C/EBPβ mediates expressions of downstream inflammatory factors of the tumor necrosis factor-α signaling pathway in renal tubular epithelial cells with NPHP1 knockdown[J]. J South Med Univ, 2024, 44 (1): 156- 165. |
| 50 |
FRANKEL S K , COSGROVE G P , CHA S I , et al. TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis[J]. Am J Respir Cell Mol Biol, 2006, 34 (3): 293- 304.
doi: 10.1165/rcmb.2005-0155OC |
| 51 |
ABBASPOUR BABAEI M , KAMALIDEHGHAN B , SALEEM M , et al. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells[J]. Drug Des Devel Ther, 2016, 10, 2443- 2459.
doi: 10.2147/DDDT.S89114 |
| 52 |
MORO K , YAMADA T , TANABE M , et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells[J]. Nature, 2010, 463, 540- 544.
doi: 10.1038/nature08636 |
| 53 |
HATZI K , NANCE J P , KROENKE M A , et al. BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms[J]. J Exp Med, 2015, 212 (4): 539- 553.
doi: 10.1084/jem.20141380 |
| 54 |
ZHU B , ZHANG R , LI C , et al. BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection[J]. Proc Natl Acad Sci U S A, 2019, 116 (24): 11888- 11893.
doi: 10.1073/pnas.1902310116 |
| 55 |
MARTIN G . Frontiers in sheep reproduction - making use of natural responses to environmental challenges to manage productivity[J]. Anim Reprod, 2022, 19 (4): e20220088.
doi: 10.1590/1984-3143-ar2022-0088 |
| 56 |
ADMANABHAN V , VEIGA-LOPEZ A . Reproduction Symposium: developmental programming of reproductive and metabolic health[J]. J Anim Sci, 2014, 92 (8): 3199- 3210.
doi: 10.2527/jas.2014-7637 |
| 57 |
CAMILLE MELÓN L , MAGUIRE J . GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function[J]. J Steroid Biochem Mol Biol, 2016, 160, 196- 203.
doi: 10.1016/j.jsbmb.2015.11.019 |
| 58 |
CATALANO P N , DI GIORGIO N , BONAVENTURA M M , et al. Lack of functional GABAB receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD-67 in the brain[J]. Am J Physiol Endocrinol Metab, 2010, 298 (3): 683- 696.
doi: 10.1152/ajpendo.00532.2009 |
| 59 |
NAVARRO V M . Metabolic regulation of kisspeptin - the link between energy balance and reproduction[J]. Nat Rev Endocrinol, 2020, 16 (8): 407- 420.
doi: 10.1038/s41574-020-0363-7 |
| 60 |
VOIGT C , BENNETT N . Reproductive status-dependent dynorphin and neurokinin B gene expression in female Damaraland mole-rats[J]. J Chem Neuroanat, 2019, 102, 101705.
doi: 10.1016/j.jchemneu.2019.101705 |
| 61 | PARKIN C , ORTIZ J , CRUZ S , et al. Pubertal- and stress-dependent changes in cellular activation and expression of excitatory amino acid receptor subunits in the paraventricular nucleus of the hypothalamus in male and female rats[J]. Dev Neurosci, 2025, 47 (3): 206- 216. |
| 62 |
IREMONGER K J , CONSTANTIN S , LIU X , et al. Glutamate regulation of GnRH neuron excitability[J]. Brain Res, 2010, 1364, 35- 43.
doi: 10.1016/j.brainres.2010.08.071 |
| 63 |
MOUSTAKAS A , PARDALI K , GAAL A , et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation[J]. Immunol Lett, 2002, 82 (1-2): 85- 91.
doi: 10.1016/S0165-2478(02)00023-8 |
| 64 |
ZHANG Y . Non-Smad pathways in TGF-β signaling[J]. Cell Res, 2009, 19 (1): 128- 139.
doi: 10.1038/cr.2008.328 |
| 65 |
DEMOULIN J B , ESSAGHIR A . PDGF receptor signaling networks in normal and cancer cells[J]. Cytokine Growth Factor Rev, 2014, 25 (3): 273- 283.
doi: 10.1016/j.cytogfr.2014.03.003 |
| 66 |
SORIANO P . The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites[J]. Development, 1997, 124 (14): 2691- 2700.
doi: 10.1242/dev.124.14.2691 |
| 67 |
ANDRAE J , GALLINI R , BETSHOLTZ C . Role of platelet-derived growth factors in physiology and medicine[J]. Genes Dev, 2008, 22 (10): 1276- 1312.
doi: 10.1101/gad.1653708 |
| 68 |
CHEN J , BUSH J O , OVITT C E , et al. The TGF-beta pseudoreceptor gene Bambi is dispensable for mouse embryonic development and postnatal survival[J]. Genesis, 2007, 45 (8): 482- 486.
doi: 10.1002/dvg.20320 |
| 69 | 杨培福. 基于全基因组重测序筛选绵羊生长性状候选基因[D]. 北京: 中国农业科学院, 2024. |
| YANG P F. Screening of sheep growth traits based on whole-genome resequencing candidate gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese) | |
| 70 |
OLSSON A K , DIMBERG A , KREUGER J , et al. VEGF receptor signalling - in control of vascular function[J]. Nat Rev Mol Cell Biol, 2006, 7 (5): 359- 371.
doi: 10.1038/nrm1911 |
| 71 |
FERRARA N , GERBER H P , LECOUTER J . The biology of VEGF and its receptors[J]. Nat Med, 2003, 9 (6): 669- 676.
doi: 10.1038/nm0603-669 |
| 72 |
SHALABY F , ROSSANT J , YAMAGUCHI T , et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice[J]. Nature, 1995, 376, 62- 66.
doi: 10.1038/376062a0 |
| 73 | 张晓静, 葛银林, 侯琳, 等. KDR为靶的siRNA抑制乳腺癌细胞增殖的体内外研究[J]. 细胞与分子免疫学杂志, 2008, 24 (1): 58- 61. |
| ZHANG X J , GE Y L , HOU L , et al. Small interference RNAs directed against KDR gene inhibit the proliferation of breast cancer cells in vitro and in vivo[J]. Chinese Journal of Cellular and Molecular Immunology, 2008, 24 (1): 58- 61. |
| [1] | 谢蓓伊庭, 沈阳阳, 安振江, 孟春花, 刘丰慧, 张俊, 张建丽, 曹少先, 李隐侠, 钱勇. 基于山羊40K液相芯片鉴定的RHOU基因调控山羊产羔数的机制探究[J]. 畜牧兽医学报, 2026, 57(1): 258-269. |
| [2] | 王有栋, 曹志平, 李玉茂, 栾鹏, 李辉, 白雪. SNP芯片技术原理及其在鸡遗传育种中的应用[J]. 畜牧兽医学报, 2025, 56(9): 4165-4175. |
| [3] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [4] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [5] | 武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740. |
| [6] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
| [7] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
| [8] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
| [9] | 王元清, 王泽昭, 朱波, 陈燕, 徐凌洋, 张路培, 高会江, 李超, 李俊雅, 高雪. 不同芯片密度对华西牛重要经济性状基因组评估准确性的影响[J]. 畜牧兽医学报, 2025, 56(2): 591-602. |
| [10] | 宋建, 贺巾锋, 郑伟杰, 刘林, 麻柱, 钱长嵩, 周靖航, 韩博, 张琪, 孙东晓. 自主研发奶牛13K和40K液相SNP芯片的性能验证及在基因组选择中的应用[J]. 畜牧兽医学报, 2025, 56(11): 5502-5511. |
| [11] | 阳文攀, 刘相杰, 罗冬香, 陈梦会, 谢瑛, 方跃鑫, 林婷燕, 李爱民, 李文静, 邓政, 丁能水. 基于芯片数据的长白猪繁殖性状基因组选择研究[J]. 畜牧兽医学报, 2025, 56(1): 213-221. |
| [12] | 田晶晶, 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超, 赵福平. 北京黑猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(9): 3833-3842. |
| [13] | 王婷, 张元庆, 闫益波, 上官明军, 郭宏宇, 王志武. “特藏寒羊”群体遗传结构分析与选择信号的对比分析[J]. 畜牧兽医学报, 2024, 55(7): 2913-2926. |
| [14] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
| [15] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||