

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (11): 5852-5863.doi: 10.11843/j.issn.0366-6964.2025.11.041
王公民(
), 伍钢, 陈雪清, 陈希文, 徐佳靖, 张源淑*(
)
收稿日期:2025-02-12
出版日期:2025-11-23
发布日期:2025-11-27
通讯作者:
张源淑
E-mail:2023807247@stu.njau.edu.cn;zhangyuanshu@njau.edu.cn
作者简介:王公民(2000-),男,山东济南人,硕士生,主要从事动物肠道健康研究,E-mail:2023807247@stu.njau.edu.cn
基金资助:
WANG Gongmin(
), WU Gang, CHEN Xueqing, CHEN Xiwen, XU Jiajing, ZHANG Yuanshu*(
)
Received:2025-02-12
Online:2025-11-23
Published:2025-11-27
Contact:
ZHANG Yuanshu
E-mail:2023807247@stu.njau.edu.cn;zhangyuanshu@njau.edu.cn
摘要:
本文旨在探究猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)感染后是否引起铁死亡及对其复制水平的影响。首先通过PEDV感染IPEC-J2(porcine intestinal epithelial cells, IPEC-J2)细胞后的蛋白组学差异蛋白、GO和KEGG富集分析推测IPEC-J2细胞在感染PEDV后会发生铁死亡,通过测定细胞中MDA、GSH含量,铁死亡关键蛋白TFRC、xCT、GPX4、ACSL4、LPCAT3和Ferritin蛋白水平及倒置荧光显微镜观察Fe2+、脂质ROS和线粒体膜电位荧光强度变化确定了会发生铁死亡。进一步通过添加铁死亡抑制剂Fer-1(ferrostatin-1)探讨了PEDV感染IPEC-J2细胞后引起的铁死亡在其感染过程中N蛋白的表达变化和病毒滴度的变化。蛋白组学的筛选结果:PEDV感染组Ferritin下调最显著;GO和KEGG富集分析结果均显示,铁代谢紊乱和脂代谢失调途径最显著,推测PEDV感染IPEC-J2后可能引起了铁死亡;感染细胞中MDA含量极显著升高,GSH含量极显著降低(P < 0.01);Ferritin、GPX4、ACSL4和LPCAT3蛋白水平均极显著下调(P < 0.01),并且TFRC蛋白水平极显著上调(P < 0.01);荧光结果显示,Fe2+相对荧光强度极显著增强、氧化型脂质ROS荧光强度极显著增强及线粒体膜电位极显著降低(P < 0.01)。在添加Fer-1后PEDV的N蛋白水平和基因水平均极显著下调(P < 0.01),并且Fer-1处理后病毒滴度也极显著下降(P < 0.01)。PEDV感染IPEC-J2细胞可以引起细胞发生铁死亡,这可能是促进其复制的机制之一。
中图分类号:
王公民, 伍钢, 陈雪清, 陈希文, 徐佳靖, 张源淑. 猪流行性腹泻病毒诱导细胞铁死亡的分析[J]. 畜牧兽医学报, 2025, 56(11): 5852-5863.
WANG Gongmin, WU Gang, CHEN Xueqing, CHEN Xiwen, XU Jiajing, ZHANG Yuanshu. Analysis of Ferroptosis Induced by Porcine Epidemic Diarrhea Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5852-5863.
表 3
PEDV感染下前10的差异蛋白筛选情况(n=3)"
| NCBI accession | 蛋白质Protein | 变化Change | 差异倍数Fold change |
| F1SCY2 | 干扰素诱导的含四肽重复序列的蛋白3 | 上调 | 24.92 |
| I3LS55 | 表皮生长因子受体途径底物8样蛋1 | 上调 | 22.58 |
| A0A287AXN9 | 角蛋白17 | 上调 | 14.33 |
| F1RGY8 | 内质网氧化还原酶1β | 上调 | 13.63 |
| A0A5K1UFA2 | 干扰素诱导的含四肽重复序列的蛋白3 | 上调 | 10.58 |
| A0A5G2REI9 | F-盒蛋白28 | 下调 | -6.80 |
| I3LII4 | 丝氨酸/苏氨酸蛋白激酶 | 下调 | -7.21 |
| F1RT08 | 腺苷甲硫氨酸脱羧酶 | 下调 | -14.28 |
| A0A8W4FQ04 | 铁蛋白 | 下调 | -37.26 |
| P19133 | 铁蛋白轻链 | 下调 | -38.84 |
| 1 |
JUNG K , ANNAMALAI T , LU Z , et al. Comparative pathogenesis of US porcine epidemic diarrhea virus (PEDV) strain PC21A in conventional 9-day-old nursing piglets vs. 26-day-old weaned pigs[J]. Vet Microbiol, 2015, 178 (1-2): 31- 40.
doi: 10.1016/j.vetmic.2015.04.022 |
| 2 |
WANG L , BYRUM B , ZHANG Y . New variant of porcine epidemic diarrhea virus, United States, 2014[J]. Emerg Infect Dis, 2014, 20 (5): 917- 919.
doi: 10.3201/eid2005.140195 |
| 3 |
ZHAO Z , SOKHANSANJ B A , MALHOTRA C , et al. Genetic grouping of SARS-CoV-2 coronavirus sequences using informative subtype markers for pandemic spread visualization[J]. PLoS Comput Biol, 2020, 16 (9): e1008269.
doi: 10.1371/journal.pcbi.1008269 |
| 4 |
LEE C . Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus[J]. Virol J, 2015, 12, 193.
doi: 10.1186/s12985-015-0421-2 |
| 5 |
GALY B , FERRING-APPEL D , KADEN S , et al. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum[J]. Cell Metab, 2008, 7 (1): 79- 85.
doi: 10.1016/j.cmet.2007.10.006 |
| 6 |
STOCKWELL B R , FRIEDMANN ANGELI J P , BAYIR H , et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171 (2): 273- 285.
doi: 10.1016/j.cell.2017.09.021 |
| 7 |
TANG Z , XU Z , ZHU X , et al. New insights into molecules and pathways of cancer metabolism and therapeutic implications[J]. Cancer Commun (Lond), 2021, 41 (1): 16- 36.
doi: 10.1002/cac2.12112 |
| 8 |
WANG Y , HU M , CAO J , et al. ACSL4 and polyunsaturated lipids support metastatic extravasation and colonization[J]. Cell, 2025, 188 (2): 412- 429.
doi: 10.1016/j.cell.2024.10.047 |
| 9 |
DOLL S , PRONETH B , TYURINA Y Y , et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13 (1): 91- 98.
doi: 10.1038/nchembio.2239 |
| 10 |
HASHIDATE-YOSHIDA T , HARAYAMA T , HISHIKAWA D , et al. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport[J]. Elife, 2015, 4, e06328.
doi: 10.7554/eLife.06328 |
| 11 |
BAI Y , MENG L , HAN L , et al. Lipid storage and lipophagy regulates ferroptosis[J]. Biochem Biophys Res Commun, 2019, 508 (4): 997- 1003.
doi: 10.1016/j.bbrc.2018.12.039 |
| 12 |
KAGAN V E , MAO G , QU F , et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13 (1): 81- 90.
doi: 10.1038/nchembio.2238 |
| 13 |
DIXON S J , STOCKWELL B R . The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10 (1): 9- 17.
doi: 10.1038/nchembio.1416 |
| 14 |
CHEN X , LI J , KANG R , et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17 (9): 2054- 2081.
doi: 10.1080/15548627.2020.1810918 |
| 15 |
MUNOZ M , GARCIA-ERCE J A , REMACHA A F . Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis[J]. J Clin Pathol, 2011, 64 (4): 281- 286.
doi: 10.1136/jcp.2010.079046 |
| 16 |
BRADLEY J M , LE BRUN N E , MOORE G R . Ferritins: furnishing proteins with iron[J]. J Biol Inorg Chem, 2016, 21 (1): 13- 28.
doi: 10.1007/s00775-016-1336-0 |
| 17 |
HOU W , XIE Y , SONG X , et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12 (8): 1425- 1428.
doi: 10.1080/15548627.2016.1187366 |
| 18 |
FRAZER D M , ANDERSON G J . The regulation of iron transport[J]. Biofactors, 2014, 40 (2): 206- 214.
doi: 10.1002/biof.1148 |
| 19 | 程峰, 张庸, 王祥, 等. 谷胱甘肽过氧化物酶GPX4在铁死亡中的作用与机制研究进展[J]. 现代肿瘤医学, 2021, 29 (7): 1254- 1258. |
| CHENG F , ZHANG Y , WANG X , et al. Research progress on the role and mechanism of glutathione peroxidase GPX4 in ferroptosis[J]. Modern Oncology Medicine, 2021, 29 (7): 1254- 1258. | |
| 20 |
LIU Y , WAN Y , JIANG Y , et al. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878 (3): 188890.
doi: 10.1016/j.bbcan.2023.188890 |
| 21 | 刘磊, 贾少晗, 于鹏. 线粒体在铁死亡中的形态特征和作用[J]. 中国生物化学与分子生物学报, 2023, 39 (6): 769- 777. |
| LIU L , JIA S H , YU P . Morphological characteristics and roles of mitochondria in ferroptosis[J]. Chinese Journal of Biochemistry and Molecular Biology, 2023, 39 (6): 769- 777. | |
| 22 |
LI J , CAO F , YIN H , et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11 (2): 88.
doi: 10.1038/s41419-020-2298-2 |
| 23 |
CHEN X , KANG R , KROEMER G , et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218 (6): e20210518.
doi: 10.1084/jem.20210518 |
| 24 |
GAO J , WANG Q , TANG Y , et al. When ferroptosis meets pathogenic infections[J]. Trends Microbiol, 2023, 31 (5): 468- 479.
doi: 10.1016/j.tim.2022.11.006 |
| 25 |
LIU G , XU X , TAO S , et al. HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression[J]. J Biomed Sci, 2021, 28 (1): 67.
doi: 10.1186/s12929-021-00762-2 |
| 26 |
KAN X , YIN Y , SONG C , et al. Newcastle-disease-virus-induced ferroptosis through nutrient deprivation and ferritinophagy in tumor cells[J]. iScience, 2021, 24 (8): 102837.
doi: 10.1016/j.isci.2021.102837 |
| 27 |
CHENG J , TAO J , LI B , et al. Swine influenza virus triggers ferroptosis in A549 cells to enhance virus replication[J]. Virol J, 2022, 19 (1): 104.
doi: 10.1186/s12985-022-01825-y |
| 28 |
KUNG Y , CHIANG H , LI M , et al. Acyl-coenzyme a synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis[J]. mBio, 2022, 13 (1): e0271721.
doi: 10.1128/mbio.02717-21 |
| 29 |
LI H , LI W , ZHANG S , et al. Enterovirus 71 activates GADD34 via precursor 3CD to promote IRES-mediated viral translation[J]. Microbiol Spectr, 2022, 10 (1): e0138821.
doi: 10.1128/spectrum.01388-21 |
| 30 |
AI Y , MENG Y , YAN B , et al. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death[J]. Mol Cell, 2024, 84 (1): 170- 179.
doi: 10.1016/j.molcel.2023.11.040 |
| 31 |
STOCKWELL B R . Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185 (14): 2401- 2421.
doi: 10.1016/j.cell.2022.06.003 |
| 32 | 苏朗驹, 黄宗洋, 黄俊, 等. 猪流行性腹泻病毒核衣壳蛋白的研究进展[J]. 中国动物传染病学报, 2024, 32 (3): 200- 208. |
| SU L J , HUANG Z Y , HUANG J , et al. Research progress of nucleocapsid protein of porcine epidemic diarrhea virus[J]. Chinese Journal of Animal Infectious Diseases, 2024, 32 (3): 200- 208. | |
| 33 |
SU M , SHI D , XING X , et al. Coronavirus porcine epidemic diarrhea virus nucleocapsid protein interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication[J]. J Virol, 2021, 95 (16): e0018721.
doi: 10.1128/JVI.00187-21 |
| 34 |
ZHAI X , KONG N , ZHANG Y , et al. N protein of PEDV plays chess game with host proteins by selective autophagy[J]. Autophagy, 2023, 19 (8): 2338- 2352.
doi: 10.1080/15548627.2023.2181615 |
| [1] | 李慧敏, 雷铭楷, 阮胜男, 李盼盼, 李文涛, 何启盖. 猪流行性腹泻病毒荧光微球免疫层析抗原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4572-4580. |
| [2] | 杨文哲, 王锦浩, 赵子琛, 赵彤, 潘飞龙, 陈芳芳, 邵雯琪, 刘克祥, 赵树臣, 赵立佳. 姜黄素影响铁死亡途径缓解LPS诱导牛乳腺上皮细胞炎性反应的分析[J]. 畜牧兽医学报, 2025, 56(9): 4730-4740. |
| [3] | 温雪, 许琬雪, 付壹彤, 杨洁, 付红玉, 樊瑞锋. 铁死亡与炎症相关性研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3666-3677. |
| [4] | 田茹, 付星玮, 胡乐玉, 朱明君, 童德文. 一株GⅡa型猪流行性腹泻病毒的分离与致病性分析[J]. 畜牧兽医学报, 2025, 56(8): 4101-4111. |
| [5] | 李志强, 陈雪清, 张源淑. 猪流行性腹泻病毒临床感染仔猪肠道组织中血管紧张素转化酶2的检测及其与肠道病理变化的关系分析[J]. 畜牧兽医学报, 2025, 56(7): 3463-3473. |
| [6] | 王运珂, 王娜, 岳珂, 何坤淼, 张兴, 刘垚, 张改平. 体外对猪流行性腹泻病毒复制具有抑制效应的物质[J]. 畜牧兽医学报, 2025, 56(6): 2577-2589. |
| [7] | 吴超, 明文含, 卢姝婉, 杨彩梅, 刘金松, 马翔, 张瑞强. 猪流行性腹泻病毒的天然免疫逃避机制及其防控研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2590-2599. |
| [8] | 周敏, 汤德元, 曾智勇, 王彬, 黄涛, 胡雯雯, 毛茵茗, 周飘, 何松. 猪流行性腹泻病毒蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2600-2612. |
| [9] | 李程程, 赵永祥, 曹秋霞, 宋旭, 李宇鹏, 范宝超, 郭容利, 徐业芬, 李彬. 紧密连接蛋白CLDN4促进猪流行性腹泻病毒感染[J]. 畜牧兽医学报, 2025, 56(6): 2826-2835. |
| [10] | 胡米, 沈瑶歆, 范宝超, 孙敏, 周金柱, 郭容利, 李彬. Eudragit L100修饰的铝锰双金属有机框架作为猪流行性腹泻灭活疫苗口服递送载体的初步评价[J]. 畜牧兽医学报, 2025, 56(5): 2292-2230. |
| [11] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
| [12] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
| [13] | 张冬萱, 王智豪, 乔岩, 赵肖肖, 范松杰, 张超. 猪流行性腹泻病毒S1蛋白的原核表达及其核酸适配体的筛选[J]. 畜牧兽医学报, 2025, 56(2): 839-850. |
| [14] | 马月, 苗宇航, 丁涛, 辛杰, 马文妍, 李雅楠, 周学章, 杜军. 重组克柔念珠菌14-3-3蛋白诱导奶牛乳腺上皮细胞铁死亡的信号通路分析[J]. 畜牧兽医学报, 2025, 56(11): 5706-5720. |
| [15] | 唐金梦, 余澍楠, 袁一心, 马雨辰, 杜文娟, 于林洋, 李永涛. 稳定表达人IFITM3的猪IPEC-J2细胞系的构建及其对PEDV增殖的影响[J]. 畜牧兽医学报, 2025, 56(10): 5180-5189. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||