畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3472-3481.doi: 10.11843/j.issn.0366-6964.2024.08.020
曹馨予(), 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊*(
)
收稿日期:
2024-01-29
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
赵博昊
E-mail:3263694549@qq.com;bhzhao@yzu.edu.cn
作者简介:
曹馨予(2002-),女,江苏溧阳人,本科生,主要从事动物遗传育种与繁殖的研究,E-mail: 3263694549@qq.com
基金资助:
Xinyu CAO(), Jiawei CAI, Zhiyuan BAO, Shuyu YAO, Yunpeng LI, Yang CHEN, Xinsheng WU, Bohao ZHAO*(
)
Received:
2024-01-29
Online:
2024-08-23
Published:
2024-08-28
Contact:
Bohao ZHAO
E-mail:3263694549@qq.com;bhzhao@yzu.edu.cn
摘要:
旨在探究自噬相关蛋白14(autophagy-related protein 14,ATG14)调控家兔毛囊毛乳头细胞(dermal papilla cells,DPCs)自噬进程对毛囊发育生长的影响。本试验选取健康6月龄长毛兔,采集背部皮肤分离培养DPCs,通过克隆ATG14基因的编码序列(coding sequence,CDS),利用生物信息学对ATG14的生物学特性进行初步分析,在家兔DPCs中过表达或敲减ATG14对自噬相关蛋白和毛囊生长发育相关基因的表达及DPCs增殖水平的影响进行探究。结果表明,ATG14基因CDS长度为1 479 bp,共编码492个氨基酸,不存在潜在信号肽及跨膜区,属于定位于细胞核的不稳定蛋白,在不同哺乳动物中存在同源性。家兔DPCs中过表达或敲减ATG14后,WB结果显示ATG14能够上调自噬标志蛋白LC3和Beclin1的蛋白表达,抑制自噬抑制蛋白P62表达水平。ATG14能够增加细胞中pEGFP-LC3B荧光表达,表明ATG14能够激活细胞中LC3B的表达。同时,在DPCs中过表达ATG14能够显著上调CCND1、FGF2、LEF1、BCL2和WNT2的mRNA表达水平,显著下调SFRP2和TGFβ-1的基因表达水平(P < 0.05),敲减ATG14能够显著下调CCND1、FGF2、LEF1、BCL2和WNT2的基因表达水平,显著上调SFRP2和TGFβ-1的mRNA水平(P < 0.05)。ATG14能够上调LEF1和CCND1的蛋白表达水平。此外,DPC中过表达ATG14能够显著促进DPCs细胞增殖(P < 0.01)。本研究通过对家兔ATG14基因调控DPCs自噬进程的功能进行分析,为阐明家兔毛囊生长发育的调控机制提供理论依据。
中图分类号:
曹馨予, 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55(8): 3472-3481.
Xinyu CAO, Jiawei CAI, Zhiyuan BAO, Shuyu YAO, Yunpeng LI, Yang CHEN, Xinsheng WU, Bohao ZHAO. The Function Analysis of ATG14 Regulates the Autophagy Process in Rabbit Hair Follicle Dermal Papilla Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3472-3481.
表 1
载体构建所用引物与干扰序列信息"
引物名称 Primer | 引物序列(5′→3′) Sequence |
pcDNA3.1-ATG14 | F:tttaaacttaagctt$\underline{ggtacc}$ATGGCGTCTCCCAGTGGG |
R:gccgccactgtgctg$\underline{gatatc}$CTAGCGGTGGCCAGTGTAAGC | |
siRNA-ATG14 | F:GCUGGUCAACAUUCUGUCUTT |
R:AGACAGAAUGUUGACCAGCTT | |
siRNA-NC | F:UUCUCCGAACGUGUCACGUTT |
R:ACGUGACACGUUCGGAGAATT |
表 2
荧光定量引物信息表"
引物名称 Primer | 引物序列(5′→3′) Sequence | 产物长度/bp Product length | 退火温度/℃ Tm |
CCND1 | F:GAACGCTACCTTCCCCAGTGCTC | 103 | 57.2 |
R:CCTCACAGACCTCCAGCATCCAG | |||
FGF2 | F:GTGTGTGCAAACCGTTACCTT | 159 | 50.9 |
R:TCGTTTCAGTGCCACATACCAG | |||
LEF1 | F:CATCTCGGGTGGATTCAGG | 121 | 53.2 |
R:ATGAGGGATGCCAGTTGTG | |||
BCL2 | F:ACATCGCCCTGTGGATGACTG | 183 | 57.6 |
R:CGAGGGTGATGCAAGCTCCTAT | |||
WNT2 | F:AGCCATCCAGGTCGTCATGAACCAG | 164 | 56.3 |
R:TGCACACACGACCTGCTGTACCC | |||
SFRP2 | F:CCAGCCCGACTTCTCCTACAAGC | 135 | 57.5 |
R:TCCAGCACCTCTTTCATGGTCT | |||
TGFβ-1 | F:CAGGTCCTTGCGGAAGTCAA | 126 | 60.0 |
R:CTGGAACGGGCTCAACATCTA | |||
GAPDH | F:CACCAGGGCTGCTTTTAACTCT | 145 | 53.9 |
R:CTTCCCGTTCTCAGCCTTGACC |
1 |
STENN K S , PAUS R . Controls of hair follicle cycling[J]. Physiol Rev, 2001, 81 (1): 449- 494.
doi: 10.1152/physrev.2001.81.1.449 |
2 |
SCHNEIDER M R , SCHMIDT-ULLRICH R , PAUS R . The hair follicle as a dynamic miniorgan[J]. Curr Biol, 2009, 19 (3): R132- R142.
doi: 10.1016/j.cub.2008.12.005 |
3 |
JI S F , ZHU Z Y , SUN X Y , et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021, 6 (1): 66.
doi: 10.1038/s41392-020-00441-y |
4 |
李玉娟, 张原铭, 张北育, 等. 饲粮赖氨酸水平对安哥拉兔产毛性能及毛囊发育的影响[J]. 畜牧兽医学报, 2023, 54 (5): 2013- 2019.
doi: 10.11843/j.issn.0366-6964.2023.05.022 |
LI Y J , ZHANG Y M , ZHANG B Y , et al. Effects of dietary lysine supplementation on hair production performance and hair follicle development of angora rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 2013- 2019.
doi: 10.11843/j.issn.0366-6964.2023.05.022 |
|
5 |
CAO W Y , LI J H , YANG K P , et al. An overview of autophagy: Mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108 (3): 304- 322.
doi: 10.1016/j.bulcan.2020.11.004 |
6 |
YAMAMOTO H , ZHANG S D , MIZUSHIMA N . Autophagy genes in biology and disease[J]. Nat Rev Genet, 2023, 24 (6): 382- 400.
doi: 10.1038/s41576-022-00562-w |
7 |
VARGAS J N S , HAMASAKI M , KAWABATA T , et al. The mechanisms and roles of selective autophagy in mammals[J]. Nat Rev Mol Cell Biol, 2023, 24 (3): 167- 185.
doi: 10.1038/s41580-022-00542-2 |
8 |
李钰浚, 何翃闳, 杨丽雪, 等. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55 (3): 905- 912.
doi: 10.11843/j.issn.0366-6964.2024.03.005 |
LI Y J , HE H H , YANG L X , et al. Advances in regulation of mammalian embryonic development by mitochondrial autophagy[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 905- 912.
doi: 10.11843/j.issn.0366-6964.2024.03.005 |
|
9 |
PARODI C , HARDMAN J A , ALLAVENA G , et al. Autophagy is essential for maintaining the growth of a human (mini-)organ: evidence from scalp hair follicle organ culture[J]. PLoS Biol, 2018, 16 (3): e2002864.
doi: 10.1371/journal.pbio.2002864 |
10 |
CHAI M , JIANG M S , VERGNES L , et al. Stimulation of hair growth by small molecules that activate autophagy[J]. Cell Rep, 2019, 27 (12): 3413- 3421.
doi: 10.1016/j.celrep.2019.05.070 |
11 |
CHOI Y K , KANG J I , HYUN J W , et al. Myristoleic acid promotes anagen signaling by autophagy through activating Wnt/β-catenin and ERK pathways in dermal papilla cells[J]. Biomol Ther, 2021, 29 (2): 211- 219.
doi: 10.4062/biomolther.2020.169 |
12 | OBARA K , OHSUMI Y . Atg14:a key player in orchestrating autophagy[J]. Int J Cell Biol, 2011, 2011, 713435. |
13 |
DIAO J J , LIU R , RONG Y G , et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes[J]. Nature, 2015, 520 (7548): 563- 566.
doi: 10.1038/nature14147 |
14 |
ZHAO Y T , ZOU Z J , SUN D X , et al. GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex[J]. Autophagy, 2021, 17 (10): 2891- 2904.
doi: 10.1080/15548627.2020.1847798 |
15 | LI J L , ZHAO B H , ZHANG X Y , et al. Establishment and functional characterization of immortalized rabbit dermal papilla cell lines[J]. Anim Biotechnol, 2023, 34 (8): 4050- 4059. |
16 | GASTEIGER E , HOOGLAND C , GATTIKER A , et al. Protein identification and analysis tools on the ExPASy server[M]. // WALKER J M.The Proteomics Protocols Handbook.Humana Totowa: Springer, 2005: 571- 607. |
17 |
PETERSEN T N , BRUNAK S , VON HEIJNE G , et al. SignalP 4.0:discriminating signal peptides from transmembrane regions[[J]. Nat Methods, 2011, 8 (10): 785- 786.
doi: 10.1038/nmeth.1701 |
18 |
MÖLLER S , CRONING M D R , APWEILER R . Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics, 2001, 17 (7): 646- 653.
doi: 10.1093/bioinformatics/17.7.646 |
19 |
BLOM N , GAMMELTOFT S , BRUNAK S . Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J]. J Mol Biol, 1999, 294 (5): 1351- 1362.
doi: 10.1006/jmbi.1999.3310 |
20 |
STEENTOFT C , VAKHRUSHEV S Y , JOSHI H J , et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology[J]. EMBO J, 2013, 32 (10): 1478- 1488.
doi: 10.1038/emboj.2013.79 |
21 | GUPTA R , BRUNAK S . Prediction of glycosylation across the human proteome and the correlation to protein function[J]. Pac Symp Biocomput, 2002, 7 (3): 310- 322. |
22 |
NAKAI K , HORTON P . PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization[J]. Trends Biochem Sci, 1999, 24 (1): 34- 35.
doi: 10.1016/S0968-0004(98)01336-X |
23 |
KUMAR S , STECHER G , LI M , et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35 (6): 1547- 1549.
doi: 10.1093/molbev/msy096 |
24 |
DELÉAGE G . ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments[J]. Bioinformatics, 2017, 33 (24): 3991- 3992.
doi: 10.1093/bioinformatics/btx521 |
25 |
WATERHOUSE A , BERTONI M , BIENERT S , et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46 (W1): W296- W303.
doi: 10.1093/nar/gky427 |
26 | HORTON P , PARK K J , OBAYASHI T , et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Res, 2007, 35 (S2): W585- W587. |
27 |
SCHMITTGEN T D , LIVAK K J . Analyzing real-time PCR data by the comparative CT method[J]. Nat Protoc, 2008, 3 (6): 1101- 1108.
doi: 10.1038/nprot.2008.73 |
28 | 黄雨馨, 梁文姿, 陈秀文, 等. 自噬在毛发再生中的作用[J]. 中国组织工程研究, 2024, 28 (7): 1112- 1117. |
HUANG Y X , LIANG W Z , CHEN X W , et al. Role of autophagy in hair regeneration[J]. Chinese Journal of Tissue Engineering Research, 2024, 28 (7): 1112- 1117. | |
29 | 万梅, 钟意, 翁祖铨, 等. 自噬抑制剂通过氧化应激诱导人头皮毛乳头细胞早衰进程[J]. 中国皮肤性病学杂志, 2023, 37 (7): 748- 754. |
WAN M , ZHONG Y , WENG Z Q , et al. Autophagy inhibitors induce premature senescence of human scalp dermal papilla cells by oxidative stress[J]. The Chinese Journal of Dermatovenereology, 2023, 37 (7): 748- 754. | |
30 | 罗怡. SCD1通过抑制自噬对毛囊生长的调控作用及机制研究[D]. 重庆: 重庆医科大学, 2022. |
LUO Y. Role and mechanism of SCD1 by inhibiting autogpagy on hair follice[D]. Chongqing: Chongqing Medical University, 2022. (in Chinese) | |
31 |
张敏, 黄蓉, 段亚君, 等. 霍山石斛通过激活自噬和抑制凋亡促进脱发模型小鼠生发作用[J]. 合肥工业大学学报(自然科学版), 2022, 45 (6): 844- 848.
doi: 10.3969/j.issn.1003-5060.2022.06.021 |
ZHANG M , HUANG R , DUAN Y J , et al. Dendrobium huoshanense promotes hair growth in mouse model of alopecia by activating autophagy and inhibiting apoptosis[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45 (6): 844- 848.
doi: 10.3969/j.issn.1003-5060.2022.06.021 |
|
32 |
NAKATOGAWA H , SUZUKI K , KAMADA Y , et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast[J]. Nat Rev Mol Cell Biol, 2009, 10 (7): 458- 467.
doi: 10.1038/nrm2708 |
33 | YANG Z F , KLIONSKY D J . An overview of the molecular mechanism of autophagy[M]. //LEVINE B, YOSHIMORI T, DERETIC V.Autophagy in Infection and Immunity.Berlin: Springer, 2009: 1- 32. |
34 |
OBARA K , SEKITO T , OHSUMI Y . Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2006, 17 (4): 1527- 1539.
doi: 10.1091/mbc.e05-09-0841 |
35 |
OHTSUBO K , MARTH J D . Glycosylation in cellular mechanisms of health and disease[J]. Cell, 2006, 126 (5): 855- 867.
doi: 10.1016/j.cell.2006.08.019 |
36 |
CHANG Y Y , NEUFELD T P . An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation[J]. Mol Biol Cell, 2009, 20 (7): 2004- 2014.
doi: 10.1091/mbc.e08-12-1250 |
37 |
MEI Y , GLOVER K , SU M F , et al. Conformational flexibility of BECN1:essential to its key role in autophagy and beyond[J]. Protein Sci, 2016, 25 (10): 1767- 1785.
doi: 10.1002/pro.2984 |
38 |
LIU Y , WEI C H , LI C , et al. Phosphoinositide-3-kinase regulatory subunit 4 participates in the occurrence and development of amyotrophic lateral sclerosis by regulating autophagy[J]. Neural Regen Res, 2022, 17 (7): 1609.
doi: 10.4103/1673-5374.330621 |
39 |
WANG Y D , LI J H , ZHENG H T , et al. Cezanne promoted autophagy through PIK3C3 stabilization and PIK3C2A transcription in lung adenocarcinoma[J]. Cell Death Discov, 2023, 9 (1): 302.
doi: 10.1038/s41420-023-01599-4 |
40 |
SHEN Q H , SHI Y , LIU J Q , et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation[J]. Autophagy, 2021, 17 (5): 1157- 1169.
doi: 10.1080/15548627.2020.1752471 |
41 | TANIDA I , UENO T , KOMINAMI E . LC3 and Autophagy[M]. //DERETIC V.Autophagosome and Phagosome.Humana Totowa: Springer, 2008: 77- 88. |
42 |
FU L L , CHENG Y , LIU B . Beclin-1:autophagic regulator and therapeutic target in cancer[J]. Int J Biochem Cell Biol, 2013, 45 (5): 921- 924.
doi: 10.1016/j.biocel.2013.02.007 |
43 |
ICHIMURA Y , KOMATSU M . Selective degradation of p62 by autophagy[J]. Semin Immunopathol, 2010, 32 (4): 431- 436.
doi: 10.1007/s00281-010-0220-1 |
44 |
HWANG J H , LEE H Y , CHUNG K B , et al. Non-thermal atmospheric pressure plasma activates Wnt/β-catenin signaling in dermal papilla cells[J]. Sci Rep, 2021, 11 (1): 16125.
doi: 10.1038/s41598-021-95650-y |
45 |
TIAN Y Z , YANG X M , DU J W , et al. Differential methylation and transcriptome integration analysis identified differential methylation annotation genes and functional research related to hair follicle development in sheep[J]. Front Genet, 2021, 12, 735827.
doi: 10.3389/fgene.2021.735827 |
46 |
MÜLLER-RÖVER S , ROSSITER H , LINDNER G , et al. Hair follicle apoptosis and Bcl-2[J]. J Investig Dermatol Symp Proc, 1999, 4 (3): 272- 277.
doi: 10.1038/sj.jidsp.5640228 |
47 |
KISO M , HAMAZAKI T S , ITOH M , et al. Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro[J]. J Dermatol Sci, 2015, 79 (2): 110- 118.
doi: 10.1016/j.jdermsci.2015.04.007 |
48 | 孙露露, 石福岳, 秦立志, 等. 皖系长毛兔不同周龄Wnt10b、SFRP2基因在皮肤中的表达规律[J]. 中国畜牧杂志, 2013, 49 (13): 4- 8. |
SUN L L , SHI F Y , QIN L Z . The expressions rules of Wnt10b and SFRP2 gene in skin of Wanxi Angora rabbit[J]. Chinese Journal of Animal Science, 2013, 49 (13): 4- 8. | |
49 | KIM B K , YOON S K . Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation[J]. Ann Dermatol, 2014, 26 (1): 79- 87. |
50 |
INUI S , FUKUZATO Y , NAKAJIMA T , et al. Androgen-inducible TGF-β1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understanding paradoxical effects of androgen on human hair growth[J]. FASEB J, 2002, 16 (14): 1967- 1969.
doi: 10.1096/fj.02-0043fje |
[1] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[2] | 张莉蕊, 张北育, 李玉娟, 刘永需, 赵红, 李福昌, 刘磊. 饲粮蛋氨酸水平对安哥拉兔产毛性能和毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3024-3031. |
[3] | 王小松, 李冬, 李淑, 陈佳力, 刘永需, 赵红, 李福昌, 刘磊. 不同饲粮铜水平对安哥拉兔生产性能及毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3032-3039. |
[4] | 李媛媛, 王天玉, 李梦, 张文慧, 王英卉, 赵天瑞, 李浩洁, 赵阳飞, 王金明. 硒代蛋氨酸通过PINK1/Parkin介导的线粒体自噬缓解氟诱导的抑郁样行为[J]. 畜牧兽医学报, 2024, 55(7): 3213-3224. |
[5] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[6] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[7] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[8] | 康佳, 段香茹, 尹雪姣, 杨若晨, 李太春, 单新雨, 陈美静, 张英杰, 刘月琴. 半胱氨酸、蛋氨酸对体外培养绒山羊次级毛囊生长及毛乳头细胞增殖的影响[J]. 畜牧兽医学报, 2024, 55(2): 515-527. |
[9] | 邱文粤, 苏依曼, 叶嘉莉, 章心婷, 庞晓玥, 王荣梅, 谢子茂, 张辉, 唐兆新, 苏荣胜. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55(2): 809-821. |
[10] | 刘悦阳, 李梦媛, 聂雪伊, 马亚博, 侯雨欣, 马伯利, 杨易, 徐金瑞. 钙结合蛋白S100A4对BCG感染THP-1细胞自噬的调控作用[J]. 畜牧兽医学报, 2024, 55(1): 311-322. |
[11] | 陈春, 康昭风, 魏岳, 黎观红, 武艳平, 谢金防. Wnt3a基因多态性与崇仁麻鸡皮肤毛囊性状相关性研究[J]. 畜牧兽医学报, 2023, 54(7): 2810-2823. |
[12] | 许甜甜, 张彤彤, 王蒙, 王昕. 转录因子Foxq1通过WNT/β-catenin信号通路影响绒山羊毛囊干细胞增殖的研究[J]. 畜牧兽医学报, 2023, 54(6): 2653-2661. |
[13] | 李玉娟, 张原铭, 张北育, 李福昌, 刘磊. 饲粮赖氨酸水平对安哥拉兔产毛性能及毛囊发育的影响[J]. 畜牧兽医学报, 2023, 54(5): 2013-2019. |
[14] | 王崇年, 于嘉霖, 宫照乾, 吴晓玲, 邓光存. 脂肪分化相关蛋白2对BCG诱导小鼠传代巨噬细胞自噬的调控作用[J]. 畜牧兽医学报, 2023, 54(5): 2134-2146. |
[15] | 袁生, 李安琪, 吕文珂, 羊露露, 周峰, 黄良宗, 白挨泉, 温峰, 黄淑坚, 郭锦玥. 一株猪伪狂犬病病毒的主要毒力相关基因的变异分析及其对家兔的致病性[J]. 畜牧兽医学报, 2023, 54(5): 2195-2199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||