畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (7): 2890-2900.doi: 10.11843/j.issn.0366-6964.2024.07.010
张瑞琪1,2(), 厐彦芹1(
), 李再山3, 尚秀国2, 兰干球1, 郭金彪2,*(
), 赵云翔1,3,*(
)
收稿日期:
2023-11-20
出版日期:
2024-07-23
发布日期:
2024-07-24
通讯作者:
郭金彪,赵云翔
E-mail:582014973@qq.com;Shanxi18404985210@163.com;469190753@qq.com;yunxiangzhao@126.com
作者简介:
张瑞琪(1999-),女,云南昆明人,硕士,主要从事动物遗传育种与繁殖研究,E-mail:582014973@qq.com张瑞琪和厐彦芹为同等贡献作者
基金资助:
Ruiqi ZHANG1,2(), Yanqin PANG1(
), Zaishan LI3, Xiuguo SHANG2, Ganqiu LAN1, Jinbiao GUO2,*(
), Yunxiang ZHAO1,3,*(
)
Received:
2023-11-20
Online:
2024-07-23
Published:
2024-07-24
Contact:
Jinbiao GUO, Yunxiang ZHAO
E-mail:582014973@qq.com;Shanxi18404985210@163.com;469190753@qq.com;yunxiangzhao@126.com
摘要:
旨在通过分析哺乳母猪采食量性状的遗传参数及全基因组关联分析(GWAS),评估基于智能饲喂技术对哺乳期采食性状的选育效果。本研究收集2022年7月至2023年5月份分娩的922头1~4胎次大白猪的哺乳期采食量数据,分析猪只的哺乳期采食情况。利用Hiblup软件对哺乳期采食性状进行遗传参数估计,后使用Plink、GEMMA和R软件进行全基因组关联分析,筛选与采食量性状相关的SNP位点及重要候选基因,并对显著关联的SNP位点上、下游420 kb范围内注释基因进行功能富集分析。结果显示,纯种大白猪哺乳期采食性状遗传力在0.20~0.27之间,并筛选到28个SNPs位点与哺乳期采食性状显著相关。通过对相关联的SNPs位点进行注释,共筛选到15个与哺乳期采食性状相关的候选基因,这些候选基因显著富集在葡萄糖、脂肪酸、激素和辅酶等的合成代谢多个生物学过程(P < 0.05),分析认为HAMP、NDUFB8、UPK1A、CHSY1、U6、COX7A1可作为大白猪哺乳期采食性状的关键候选基因。以上研究结果为大白猪哺乳期采食性状提供重要的遗传变异位点与后续基因,为后期利用该遗传分子标记进一步改良采食量性状的选育奠定基础,也将为大白猪哺乳母猪高繁殖力和高泌乳性能品种选育提供理论支撑。
中图分类号:
张瑞琪, 厐彦芹, 李再山, 尚秀国, 兰干球, 郭金彪, 赵云翔. 基于智能饲喂开展哺乳母猪采食量基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2890-2900.
Ruiqi ZHANG, Yanqin PANG, Zaishan LI, Xiuguo SHANG, Ganqiu LAN, Jinbiao GUO, Yunxiang ZHAO. Research on Feeding Capacity Selection of Lactating Sows Based on Intelligent Precision Feeding[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2890-2900.
表 1
采食性状统计分析及遗传力估计"
性状Trait | 头数Number | 最大值/(g·d-1) Max | 最小值/(g·d-1) Min | 平均值±标准差/(g·d-1) Mean±Standard deviation | 变异系数/% Coefficient of variation | h2 |
哺乳期日均采食量Average daily feed intake during lactation | 902 | 8 407 | 3 508 | 5 695±777 | 13.64 | 0.27 |
哺乳期第一周日均采食量Average daily feed intake during the first week of lactation | 868 | 6 194 | 947 | 4 065±824 | 20.27 | 0.23 |
哺乳期第二周日均采食量Average daily feed intake during the second week of lactation | 878 | 8 844 | 2 963 | 6 031±956 | 15.85 | 0.26 |
哺乳期第三周日均采食量Average daily feed intake during the third week of lactation | 742 | 10 461 | 3 438 | 6 543±1 064 | 16.26 | 0.20 |
表 2
采食量与繁殖性能间的相关性分析"
性状Trait | 哺乳期日均采食量Average daily feed intake during lactation | 哺乳期第一周日均采食量Average daily feed intake during the first week of lactation | 哺乳期第二周日均采食量Average daily feed intake during the second week of lactation | 哺乳期第三周日均采食量Average daily feed intake during the third week of lactation | 断配间隔Dismatching interval | 下一胎次总产仔数Total litter size at next birth |
哺乳期日均采食量Average daily feed intake during lactation | 1 | |||||
哺乳期第一周日均采食量Average daily feed intake during the first week of lactation | 0.75*** | 1 | ||||
哺乳期第二周日均采食量Average daily feed intake during the second week of lactation | 0.94*** | 0.73*** | 1 | |||
哺乳期第三周日均采食量Average daily feed intake during the third week of lactation | 0.85*** | 0.29*** | 0.78*** | 1 | ||
断配间隔Dismatching interval | -0.07 | 0.21 | 0.04 | -0.27** | 1 | |
下一胎次总产仔数Total litter size at next birth | 0.18 | 0.14 | -0.02 | 0.16** | -0.87 | 1 |
表 3
筛选与采食性状显著相关的SNPs"
性状Trait | SNP位点SNP loci | 染色体Chromosome | 位置Position | 最小等位基因频率Minimum allele frequency | P | 最近基因Nearest gene | 最近距离Nearest distance |
第一周日均采食量Average daily feed intake during the first week of lactation | rs321811272 | 6 | 44908270 | 0.147 | 2.83×10-6 | HAMP | 120 965 |
rs341818044 | 6 | 45092427 | 0.161 | 1.90×10-6 | UPK1A | -11 594 | |
rs330188241 | 6 | 45142409 | 0.161 | 1.90×10-6 | UPK1A | 28 287 | |
rs3471691301 | 6 | 45223393 | 0.161 | 1.90×10-6 | U6 | -99 895 | |
rs322027839 | 6 | 45244146 | 0.161 | 1.90×10-6 | U6 | -79 142 | |
rs325439878 | 6 | 45811589 | 0.445 | 1.77×10-5 | COX7A1 | 290 876 | |
rs344506073 | 7 | 63617372 | 0.153 | 2.33×10-5 | |||
rs3473795189 | 7 | 63630576 | 0.155 | 2.84×10-5 | |||
rs321926366 | 9 | 123440360 | 0.363 | 7.89×10-5 | |||
rs81232569 | 17 | 44965892 | 0.188 | 9.31×10-5 | |||
rs342256202 | 17 | 44988096 | 0.200 | 6.02×10-5 | |||
第二周日均采食量Average daily Feed intake during the second week of lactation | rs80782279 | 4 | 8954952 | 0.399 | 8.31×10-5 | ||
rs341143158 | 4 | 9059801 | 0.242 | 4.79×10-5 | |||
rs80835898 | 4 | 9059829 | 0.397 | 7.58×10-5 | |||
rs337240073 | 14 | 5402905 | 0.312 | 9.02×10-5 | |||
rs337081410 | 14 | 5402971 | 0.312 | 9.02×10-5 | |||
rs319708616 | 14 | 5402978 | 0.312 | 9.02×10-5 | |||
rs331157866 | 14 | 5736105 | 0.300 | 4.88×10-5 | |||
rs339438831 | 14 | 5736112 | 0.300 | 4.88×10-5 | |||
rs322722609 | 14 | 5736160 | 0.299 | 5.33×10-5 | |||
第三周日均采食量Averag daily feed intake during the third week of lactation | rs327338831 | 1 | 138852678 | 0.454 | 6.14×10-5 | U6 | 250 527 |
rs322009388 | 1 | 138949706 | 0.454 | 5.94×10-5 | U6 | 347 555 | |
rs333310113 | 1 | 139207648 | 0.454 | 5.92×10-5 | |||
rs338115020 | 1 | 139240890 | 0.454 | 7.03×10-5 | |||
rs329224371 | 1 | 139495954 | 0.454 | 7.76×10-5 | CHSY1 | -234 767 | |
rs322312894 | 6 | 66166982 | 0.379 | 1.02×10-4 | |||
rs320830362 | 14 | 111845810 | 0.155 | 5.98×10-5 | NDUFB8 | 212 246 | |
rs80922182 | 14 | 116346626 | 0.135 | 9.57×10-5 | U1 | -56 152 |
1 |
TUMMARUK P , DE RENSIS F , KIRKWOOD R N . Managing prolific sows in tropical environments[J]. Mol Reprod Dev, 2023, 90 (7): 533- 545.
doi: 10.1002/mrd.23661 |
2 |
YANG Y Y , HU C J , ZHAO X C , et al. Dietary energy sources during late gestation and lactation of sows: effects on performance, glucolipid metabolism, oxidative status of sows, and their offspring[J]. J Anim Sci, 2019, 97 (11): 4608- 4618.
doi: 10.1093/jas/skz297 |
3 |
RODRÍGUEZ M , DÍAZ-AMOR G , MORALES J , et al. Feed intake patterns of modern genetics lactating sows: characterization and effect of the reproductive parameters[J]. Porcine Health Manag, 2023, 9 (1): 6.
doi: 10.1186/s40813-022-00300-y |
4 |
BERGSMA R , KANIS E , VERSTEGEN M W A , et al. Genetic parameters and predicted selection results for maternal traits related to lactation efficiency in sows[J]. J Anim Sci, 2008, 86 (5): 1067- 1080.
doi: 10.2527/jas.2007-0165 |
5 |
MANZANILLA-PECH C I V , STEPHANSEN R B , LASSEN J . Genetic parameters for feed intake and body weight in dairy cattle using high-throughput 3-dimensional cameras in Danish commercial farms[J]. J Dairy Sci, 2023, 106 (12): 9006- 9015.
doi: 10.3168/jds.2023-23405 |
6 |
KIM S W , EASTER R A . Nutrient mobilization from body tissues as influenced by litter size in lactating sows[J]. J Anim Sci, 2001, 79 (8): 2179- 2186.
doi: 10.2527/2001.7982179x |
7 |
GREINER L , NEILL C , ALLEE G L , et al. The feeding of dried distillers' grains with solubles to lactating sows[J]. J Anim Sci, 2015, 93 (12): 5718- 5724.
doi: 10.2527/jas.2015-9545 |
8 | 米蕾英, 王勇. 浅论日粮中添加苜蓿草粉对母猪繁殖性能的影响[J]. 吉林畜牧兽医, 2021, 42 (10): 29- 30. |
MI L Y , WANG Y . Effects of alfalfa meal supplementation on reproductive performance of sows were discussed[J]. Jilin Animal Husbandry and Veterinary Medicine, 2021, 42 (10): 29- 30. | |
9 | 李颖, 任丽萍, 远永来. 苜蓿草粉对仔猪生长性能、肠道抗氧化指标和肠道形态结构的影响[J]. 中国饲料, 2024, (6): 18- 21. |
LI Y , REN L P , YUAN Y L . The effects of alfalfa meal on growth performance, intestinal antioxidant indicators, and intestinal morphology of piglets[J]. China Feed, 2024, (6): 18- 21. | |
10 |
GILBERT H , BIDANEL J P , BILLON Y , et al. Correlated responses in sow appetite, residual feed intake, body composition, and reproduction after divergent selection for residual feed intake in the growing pig[J]. J Anim Sci, 2012, 90 (4): 1097- 1108.
doi: 10.2527/jas.2011-4515 |
11 |
BERGSMA R , MATHUR P K , KANIS E , et al. Genetic correlations between lactation performance and growing-finishing traits in pigs[J]. J Anim Sci, 2013, 91 (8): 3601- 3611.
doi: 10.2527/jas.2012-6200 |
12 |
LUNDGREN H , FIKSE W F , GRANDINSON K , et al. Genetic parameters for feed intake, litter weight, body condition and rebreeding success in primiparous Norwegian Landrace sows[J]. Animal, 2014, 8 (2): 175- 183.
doi: 10.1017/S1751731113002000 |
13 |
THEKKOOT D M , YOUNG J M , ROTHSCHILD M F , et al. Genomewide association analysis of sow lactation performance traits in lines of Yorkshire pigs divergently selected for residual feed intake during grow-finish phase[J]. J Anim Sci, 2016, 94 (6): 2317- 2331.
doi: 10.2527/jas.2015-0258 |
14 | 赵云翔, 邝伟键, 高宁, 等. 杜洛克公猪背膘厚度、日增重、日采食量和饲料效率相关性状的遗传参数估计[J]. 家畜生态学报, 2019, 40 (11): 18- 21. |
ZHAO Y X , KUANG W J , GAO N , et al. Estimation of genetic parameters of growth and feed efficiency related traits in YX China-line Duroc specialized strain[J]. Acta Ecologae Animalis Domastici, 2019, 40 (11): 18- 21. | |
15 |
WANG S L , JIANG H H , QIAO Y L , et al. The research progress of vision-based artificial intelligence in smart pig farming[J]. Sensors, 2022, 22 (17): 6541.
doi: 10.3390/s22176541 |
16 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
17 |
YIN L L , ZHANG H H , TANG Z S , et al. HIBLUP: an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data[J]. Nucleic Acids Res, 2023, 51 (8): 3501- 3512.
doi: 10.1093/nar/gkad074 |
18 |
ZHOU X , STEPHENS M . Genome-wide efficient mixed-model analysis for association studies[J]. Nat Genet, 2012, 44 (7): 821- 824.
doi: 10.1038/ng.2310 |
19 | XIE C , MAO X Z , HUANG J J , et al. KOBAS 2.0:a web server for annotation and identification of enriched pathways and diseases[J]. Nucleic Acids Res, 2011, 39 (Web Server issue): W316- W322. |
20 |
STRATHE A V , STRATHE A B , THEIL P K , et al. Determination of protein and amino acid requirements of lactating sows using a population-based factorial approach[J]. Animal, 2015, 9 (8): 1319- 1328.
doi: 10.1017/S1751731115000488 |
21 | SOEDE N M, KEMP B. Best practices in the lactating and weaned sow to optimize reproductive physiology and performance[M]//FARMER C. The Gestating and Lactating Sow. Wageningen: Wageningen Academic Publishers, 2015: 377-408. |
22 |
KOKETSU Y , TANI S , ⅡDA R . Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds[J]. Porcine Health Manag, 2017, 3, 1- 10.
doi: 10.1186/s40813-016-0049-7 |
23 |
STRATHE A V , BRUUN T S , HANSEN C F . Sows with high milk production had both a high feed intake and high body mobilization[J]. Animal, 2017, 11 (11): 1913- 1921.
doi: 10.1017/S1751731117000155 |
24 |
COSTERMANS N G J , TEERDS K J , KEMP B , et al. Physiological and metabolic aspects of follicular developmental competence as affected by lactational body condition loss[J]. Mol Reprod Dev, 2023, 90 (7): 491- 502.
doi: 10.1002/mrd.23628 |
25 |
COSTERMANS N G J , SOEDE N M , MIDDELKOOP A , et al. Influence of the metabolic state during lactation on milk production in modern sows[J]. Animal, 2020, 14 (12): 2543- 2553.
doi: 10.1017/S1751731120001536 |
26 |
KOKETSU Y . Influence of cumulative feed intake during early and mid-lactation on luteinizing hormone secretion and weaning-to-estrus interval in primiparous sows[J]. J Vet Med Sci, 1999, 61 (4): 325- 329.
doi: 10.1292/jvms.61.325 |
27 | KUHLA B , METGES C C , HAMMON H M . Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows[J]. Domest Anim Endocrinol, 2016, 56 (Suppl): S2- S10. |
28 |
CHALKIAS H , JONAS E , ANDERSSON L S , et al. Identification of novel candidate genes for the inverted teat defect in sows using a genome-wide marker panel[J]. J Appl Genet, 2017, 58 (2): 249- 259.
doi: 10.1007/s13353-016-0382-1 |
29 |
JIANG L , WANG J M , WANG K , et al. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation[J]. Blood, 2021, 138 (8): 689- 705.
doi: 10.1182/blood.2020008986 |
30 |
WILMAN H R , PARISINOS C A , ATABAKI-PASDAR N , et al. Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration[J]. J Hepatol, 2019, 71 (3): 594- 602.
doi: 10.1016/j.jhep.2019.05.032 |
31 |
JULIÁN-SERRANO S , YUAN F C , WHEELER W , et al. Hepcidin-regulating iron metabolism genes and pancreatic ductal adenocarcinoma: a pathway analysis of genome-wide association studies[J]. Am J Clin Nutr, 2021, 114 (4): 1408- 1417.
doi: 10.1093/ajcn/nqab217 |
32 |
LIU N , XIAO B , REN H Y , et al. Systematic identification and characterization of porcine snoRNAs: structural, functional and developmental insights[J]. Anim Genet, 2013, 44 (1): 24- 33.
doi: 10.1111/j.1365-2052.2012.02363.x |
33 |
TALBOT N C , SHANNON A E , GARRETT W M . Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue[J]. In Vitro Cell Dev Biol Anim, 2019, 55 (4): 285- 301.
doi: 10.1007/s11626-019-00336-5 |
34 |
DRÖGEMÜLLER C , KUIPER H , VOß-NEMITZ R , et al. Molecular characterization and chromosome assignment of the porcine gene COX7A1 coding for the muscle specific cytochrome c oxidase subunit VⅡa-M[J]. Cytogenet Cell Genet, 2001, 94 (3-4): 190- 193.
doi: 10.1159/000048814 |
35 |
FENG Y T , XU J Y , SHI M J , et al. COX7A1 enhances the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via regulating mitochondrial metabolism[J]. Cell Death Dis, 2022, 13 (11): 988.
doi: 10.1038/s41419-022-05430-3 |
36 |
GUO M , LIU Z , WILLEN J , et al. Epigenetic profiling of growth plate chondrocytes sheds insight into regulatory genetic variation influencing height[J]. eLife, 2017, 6, e29329.
doi: 10.7554/eLife.29329 |
37 | BERLAND C , CASTEL J , TERRASI R , et al. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis[J]. Mol Psychiatry, 2022, 27 (4): 2340- 2354. |
38 | KUHLA B . Review: pro-inflammatory cytokines and hypothalamic inflammation: implications for insufficient feed intake of transition dairy cows[J]. Animal, 2020, 14 Suppl 1, s65- s77. |
39 | GAITÁN A V , WOOD J T , LIU Y P , et al. Maternal dietary fatty acids and their relationship to derived endocannabinoids in human milk[J]. J Hum Lact, 2021, 37 (4): 813- 820. |
40 | XIE J H , SHI S Y , LIU Y C , et al. Fructose metabolism and its role in pig production: a mini-review[J]. Front Nutr, 2022, 9, 922051. |
41 | DIMITRIADIS G D , MARATOU E , KOUNTOURI A , et al. Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: an integrative approach[J]. Nutrients, 2021, 13 (1): 159. |
42 | 杨俊, 赵小刚, 张桂红, 等. 哺乳母猪饲粮中添加鱼油对母猪泌乳性能的影响[J]. 饲料研究, 2024, 47 (5): 26- 31. |
YANG J , ZHAO X G , ZHANG G H , et al. Effect of fish oil supplementation in lactating sow diet on lactation performance[J]. Feed Research, 2024, 47 (5): 26- 31. |
[1] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[2] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[3] | 唐鑫鑫, 郑炬梅, 骆娜, 营凡, 朱丹, 李森, 刘大伟, 安炳星, 文杰, 赵桂苹, 李和刚. 基于全基因组关联分析揭示肉鸡腿病发生的遗传机制[J]. 畜牧兽医学报, 2024, 55(1): 99-109. |
[4] | 李柯安宁, 杜丽丽, 安炳星, 邓天宇, 梁忙, 曹晟, 杜悦莹, 徐凌洋, 高雪, 张路培, 李俊雅, 高会江. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(9): 3664-3676. |
[5] | 白露, 王梦杰, 马小春, 何政肖, 谭晓冬, 刘杰, 赵桂苹, 文杰, 刘冉冉. 一种快速挖掘鸡品种特征性SNP标记集合的方法[J]. 畜牧兽医学报, 2023, 54(8): 3252-3261. |
[6] | 张笑科, 廖伟莉, 陈信佑, 李婷婷, 袁晓龙, 李加琪, 黄翔, 张豪. 杜洛克猪生长性状全基因组关联分析及候选基因鉴定[J]. 畜牧兽医学报, 2023, 54(5): 1868-1876. |
[7] | 吴骏, 蔡晓钿, 林清, 钟展明, 叶浩强, 魏趁, 徐志婷, 吴细波, 司景磊, 张哲, 李加琪. 大白猪眼肌面积、估计瘦肉率和背膘厚的加权一步法全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(4): 1403-1414. |
[8] | 张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础[J]. 畜牧兽医学报, 2023, 54(2): 534-544. |
[9] | 高超群, 曹然然, 杜文苹, 胡晓玉, 雷艳茹, 李文婷, 康相涛. 基于全基因组SNP标记分析中国地方鸡品种的遗传多样性和种群结构[J]. 畜牧兽医学报, 2023, 54(2): 554-562. |
[10] | 范晨宇, 单艳菊, 章明, 姬改革, 巨晓军, 屠云洁, 贺喜, 束婧婷, 刘一帆, 张海涵. 立华麻黄鸡体重和肉品质性状全基因组关联分析[J]. 畜牧兽医学报, 2023, 54(12): 4982-4992. |
[11] | 赵雪洋, 李丹妮, 王钰晨, 郭磊, 王丽, 黄杰, 焦仪强, 安小鹏, 张希云, 张磊, 宋宇轩. 东湖杂交羊产羔性状的GWAS分析及候选基因GRID2的验证[J]. 畜牧兽医学报, 2023, 54(11): 4625-4635. |
[12] | 张昌政, 李德森, 黄敏, 方晓敏, 赵为民, 任守文, 董焕声, 任军, 周李生. 基于全基因组填充重测序关联分析鉴别影响苏山猪初生体尺与乳头数性状的遗传位点[J]. 畜牧兽医学报, 2023, 54(1): 88-102. |
[13] | 吴平先, 陈力, 龙熙, 柴捷, 张廷焕, 徐顺来, 郭宗义, 王金勇. 荣昌猪初产繁殖性状的全基因组关联研究[J]. 畜牧兽医学报, 2023, 54(1): 103-112. |
[14] | 李玲, 李业芳, 梁奔梦, 孙玉江, 马月辉, 马青, 蒋琳, 刘书琴. 基于SNP标记的滩羊亲子鉴定研究[J]. 畜牧兽医学报, 2022, 53(9): 2912-2919. |
[15] | 马丽霞, 曹国伟, 朱红芳, 邓占钊, 蔡正云, 周成浩, 韩威, 顾亚玲, 张娟. 基于RAD-seq静原鸡保种群体的遗传变异分析[J]. 畜牧兽医学报, 2022, 53(7): 2104-2117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||