[1] RAY K, MARTEYN B, SANSONETTI P J, et al. Life on the inside: the intracellular lifestyle of cytosolic bacteria[J]. Nat Rev Microbiol, 2009, 7(5):333-340. [2] LECUIT M. Listeria monocytogenes, a model in infection biology[J]. Cell Microbiol, 2020, 22(4):e13186. [3] CHEN M T, CHENG J H, PANG R, et al. Rapid detection of Listeria monocytogenes sequence type 121 strains using a novel multiplex PCR assay[J]. LWT, 2019, 116:108474. [4] SUMRALL E T, KELLER A P, SHEN Y, et al. Structure and function of Listeria teichoic acids and their implications[J]. Mol Microbiol, 2020, 113(3):627-637. [5] CARVALHO F, SOUSA S, CABANES D. l-Rhamnosylation of wall teichoic acids promotes efficient surface association of Listeria monocytogenes virulence factors InlB and Ami through interaction with GW domains[J]. Environ Microbiol, 2018, 20(11):3941-3951. [6] SUMRALL E T, SCHNEIDER S R, BOULOS S, et al. Glucose decoration on wall teichoic acid is required for phage adsorption and InlB-mediated virulence in Listeria ivanovii[J]. J Bacteriol, 2021, 203(16):e0013621. [7] TIAN Y, WU L T, ZHU M Y, et al. Non-coding RNA regulates phage sensitivity in Listeria monocytogenes[J]. PLoS One, 2021, 16(12):e0260768. [8] 陈青黎, 童贻刚. 工程噬菌体的合成生物学“智造”[J]. 合成生物学, 2023, 4(2):283-300. CHEN Q L, TONG Y G. Merging the frontiers:synthetic biology for advanced bacteriophage design[J]. Synthetic Biology Journal, 2023, 4(2):283-300. (in Chinese) [9] JAIN P, THALER D S, MAIGA M, et al. Reporter phage and breath tests:emerging phenotypic assays for diagnosing active tuberculosis, antibiotic resistance, and treatment efficacy[J]. J Infect Dis, 2011, 204(S4):S1142-S1150. [10] MEILE S, SARBACH A, DU J M, et al. Engineered reporter phages for rapid bioluminescence-based detection and differentiation of viable Listeria cells[J]. Appl Environ Microbiol, 2020, 86(11):e00442-20. [11] HALL M P, UNCH J, BINKOWSKI B F, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate[J]. ACS Chem Biol, 2012, 7(11):1848-1857. [12] 李天昊, 赵学慧, 宋 晨, 等. 1株跨种裂解李氏杆菌噬菌体的分离鉴定[J]. 畜牧兽医学报, 2022, 53(5):1544-1552. LI T H, ZHAO X H, SONG C, et al. Isolation and identification of a cross-species phage against Listeria[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5):1544-1552. (in Chinese) [13] DUNNE M, HUPFELD M, KLUMPP J, et al. Molecular basis of bacterial host interactions by gram-positive targeting bacteriophages[J]. Viruses, 2018, 10(8):397. [14] SUMRALL E T, SHEN Y, KELLER A P, et al. Phage resistance at the cost of virulence:Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion[J]. PLoS Pathog, 2019, 15(10):e1008032. [15] DUNNE M, RUPF B, TALA M, et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins[J]. Cell Rep, 2019, 29(5):1336-1350. e4. [16] RUSSELL D A. Sequencing, assembling, and finishing complete bacteriophage genomes[M]//CLOKIE M R J, KROPINSKI A M, LAVIGNE R. Bacteriophages:Methods and Protocols, Volume 3. New York:Humana Press, 2018:109-125. [17] PIRES D P, CLETO S, SILLANKORVA S, et al. Genetically Engineered Phages:a review of advances over the last decade[J]. Microbiol Mol Biol Rev, 2016, 80(3):523-543. [18] 李艳兰, 祝希辉, 李玉保, 等. 基因工程编辑噬菌体的技术及应用[J]. 黑龙江畜牧兽医, 2022(9):41-45. LI Y L, ZHU X H, LI Y B, et al. Technology and application of phage edited by genetic engineering[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(9):41-45. (in Chinese) [19] HUPFELD M, TRASANIDOU D, RAMAZZINI L, et al. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage[J]. Nucl Acids Res, 2018, 46(13):6920-6933. [20] GANZ G M, REINAU L, IMHAUS A F, et al. AquaSparkTM-rapid environmental monitoring of Listeria monocytogenes[J]. Chimia (Aarau), 2020, 74(10):791-797. [21] ARIAS-RIOS E V, TENNEY K, MAI T, et al. Application of Sample6 DETECT? HT/L kit for the detection of Listeria in mixed leafy greens[J]. J AOAC Int, 2020, 103(1):156-160. [22] LAI T T, PHAM T T H, VAN LINGEN M, et al. Development of antimicrobial paper coatings containing bacteriophages and silver nanoparticles for control of foodborne pathogens[J]. Viruses, 2022, 14(11):2478-2478. [23] LEDSGAARD L, KILSTRUP M, KARATT-VELLATT A, et al. Basics of antibody phage display technology[J]. Toxins (Basel), 2018, 10(6):236. [24] ZANGANEH S, ROUHANI NEJAD H, MEHRABADI J F, et al. Rapid and sensitive detection of staphylococcal enterotoxin B by recombinant Nanobody using phage display technology[J]. Appl Biochem Biotechnol, 2019, 187(2):493-505. [25] LI L, ZHANG H W, SONG D D, et al. Simultaneous detection of three zoonotic pathogens based on phage display peptide and multicolor quantum dots[J]. Anal Biochem, 2020, 608:113854. [26] JADHAV S, BHAVE M, PALOMBO E A. Methods used for the detection and subtyping of Listeria monocytogenes[J]. J Microbiol Methods, 2012, 88(3):327-341. [27] SONG J, NIU W C, WU R, et al. The phage holin HolGH15 exhibits potential as an antibacterial agent to control Listeria monocytogenes[J]. Foodborne Pathog Dis, 2021, 18(8):574-581. [28] CHIBEU A, AGIUS L, GAO A L, et al. Efficacy of bacteriophage LISTEX?P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef[J]. Int J Food Microbiol, 2013, 167(2):208-214. [29] DYKES G A, MOORHEAD S M. Combined antimicrobial effect of nisin and a listeriophage against Listeria monocytogenes in broth but not in buffer or on raw beef[J]. Int J Food Microbiol, 2002, 73(1):71-81. [30] LEVERENTZ B, CONWAY W S, CAMP M J, et al. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin[J]. Appl Environ Microbiol, 2003, 69(8):4519-4526. [31] CARLTON R M, NOORDMAN W H, BISWAS B, et al. Bacteriophage P100 for control of Listeria monocytogenes in foods:genome sequence, bioinformatic analyses, oral toxicity study, and application[J]. Regul Toxicol Pharmacol, 2005, 43(3):301-312. [32] GUENTHER S, HUWYLER D, RICHARD S, et al. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods[J]. Appl Environ Microbiol, 2009, 75(1):93-100. [33] HOLCK A, BERG J. Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures[J]. Appl Environ Microbiol, 2009, 75(21):6944-6946. [34] BIGOT B, LEE W J, MCINTYRE L, et al. Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage[J]. Food Microbiol, 2011, 28(8):1448-1452. [35] OLIVEIRA M, VIÑAS I, COLÀS P, et al. Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices[J]. Food Microbiol, 2014, 38:137-142. [36] LEWIS R, BOLOCAN A S, DRAPER L A, et al. The effect of a commercially available bacteriophage and Bacteriocin on Listeria monocytogenes in coleslaw[J]. Viruses, 2019, 11(11):977. [37] AXELSSON L, BJERKE G A, MCLEOD A, et al. Growth behavior of Listeria monocytogenes in a traditional Norwegian fermented fish product (Rakfisk), and its inhibition through bacteriophage addition[J]. Foods, 2020, 9(2):119. [38] ANANY H, CHEN W, PELTON R, et al. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes[J]. Appl Environ Microbiol, 2011, 77(18):6379-6387. [39] RADFORD D, GUILD B, STRANGE P, et al. Characterization of antimicrobial properties of Salmonella phage Felix O1 and Listeria phage A511 embedded in xanthan coatings on Poly (lactic acid) films[J]. Food Microbiol, 2017, 66: 117-128. [40] ROY B, ACKERMANN H W, PANDIAN S, et al. Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound[J]. Appl Environ Microbiol, 1993, 59(9):2914-2917. [41] HIBMA A M, JASSIM S A A, GRIFFITHS M W. Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage[J]. Int J Food Microbiol, 1997, 34(3):197-207. [42] GANEGAMA ARACHCHI G J, CRIDGE A G, DIAS-WANIGASEKERA B M, et al. Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm[J]. J Ind Microbiol Biotechnol, 2013, 40(10):1105-1116. [43] RODRÍGUEZ-MELCÓN C, CAPITA R, GARCÍA-FERNÁNDEZ C, et al. Effects of Bacteriophage P100 at different concentrations on the structural parameters of Listeria monocytogenes biofilms[J]. J Food Prot, 2018, 81(12):2040-2014. |