畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5839-5853.doi: 10.11843/j.issn.0366-6964.2024.12.045
陈晓丽1(), 周佳浩1, 周静1, 屈倩1, 王志华1, 熊鹰1, 朱咏琪1, 贾伟新1, 吕伟杰1,*(
), 郭世宁1,2,*(
)
收稿日期:
2024-01-02
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
吕伟杰,郭世宁
E-mail:xiaolichen@stu.scau.edu.cn;lvwj@scau.edu.cn;shining@scau.edu.cn
作者简介:
陈晓丽(1992-), 女, 福建诏安人, 博士生, 主要从事中药抗病毒研究, E-mail: xiaolichen@stu.scau.edu.cn
基金资助:
CHEN Xiaoli1(), ZHOU Jiahao1, ZHOU Jing1, QU Qian1, WANG Zhihua1, XIONG Ying1, ZHU Yongqi1, JIA Weixin1, LÜ Weijie1,*(
), GUO Shining1,2,*(
)
Received:
2024-01-02
Online:
2024-12-23
Published:
2024-12-27
Contact:
LÜ Weijie, GUO Shining
E-mail:xiaolichen@stu.scau.edu.cn;lvwj@scau.edu.cn;shining@scau.edu.cn
摘要:
旨在为评价中药体外对非洲猪瘟病毒的抑制作用,本研究将5种试验用药:连翘、马勃、改良育阴方(modified Yuyin decoction, MYY)、复方鱼腥草(复方2)和银翘马勃散(复方3),通过qPCR检测不同中药在被非洲猪瘟病毒(African swine fever virus, ASFV)感染的猪肺泡巨噬细胞(porcine alveolar macrophages, PAMs)中,对ASFV编码的衣壳蛋白p72的影响,筛选出可以显著降低ASFV-p72基因表达的中药为改良育阴方(MYY)。采用LC-MS分析检测出改良育阴方的主要化学成分;采用CCK8法观察改良育阴方对猪肺泡巨噬细胞(PAMs)活力的影响;荧光定量PCR检测ASFV-p72基因的表达;Western blot和ELISA检测CGAS-STING信号通路蛋白表达水平;RU.521作为cGAS抑制剂用于验证MYY在cGAS-STING通路中对ASFV的作用。结果表明,在PAMs中,MYY可以显著降低ASFV-p72基因表达,在ASFV感染2 h给药效果最佳,对ASFV感染PAMs后的细胞活力具有浓度依赖性改善作用。攻毒后2 h,使用MYY发现PAMs细胞上清液中干扰素基因刺激蛋白(STING)、TANK结合激酶1(TBK1)、干扰素调节因子3(IRF3)、干扰素诱导跨膜蛋白3(IFITM3)表达量的下降,PAMs细胞内环状GMP-AMP合成酶(cGAS)、干扰素β(IFNβ)蛋白量表达增加,MYY可激活cGAS-STING-TBK1-IRF3-IFNβ信号通路,促进IFITM3的表达。经RU.521处理后,MYY仍能提高细胞活力,降低ASFV-p72基因的表达。综上所述,MYY具有抑制ASFV的潜在作用,可能与cGAS-STING信号通路的激活促进IFITM3的表达有关。
中图分类号:
陈晓丽, 周佳浩, 周静, 屈倩, 王志华, 熊鹰, 朱咏琪, 贾伟新, 吕伟杰, 郭世宁. 改良育阴方对非洲猪瘟病毒感染PAMs的cGAS-STING通路影响[J]. 畜牧兽医学报, 2024, 55(12): 5839-5853.
CHEN Xiaoli, ZHOU Jiahao, ZHOU Jing, QU Qian, WANG Zhihua, XIONG Ying, ZHU Yongqi, JIA Weixin, LÜ Weijie, GUO Shining. Effect of Modified Yuyin Decoction on cGAS-STING Pathway of African Swine Fever Virus Infected PAMs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5839-5853.
表 1
试验用药"
试验用药 Experimental drug | 组方 Composition | 剂量/g Dosage | 作用功效 Function and efficacy |
连翘 Forsythia | 单药 | 20 | 清热,解毒,散结,消肿 |
马勃Sphaerium | 单药 | 20 | 清肺利咽,解毒,止血 |
改良育阴方(MYY)(复方1) Modified Yuyin decoction (Compound 1) | 石膏 | 30 | 清热泻火 |
知母 | 18 | 和石膏同用,可增强石膏的清热泻火作用 | |
玄参 | 18 | 清热凉血,滋阴降火,除烦,解毒 | |
蒲公英 | 18 | 清热解毒,利尿散结 | |
金银花 | 20 | 清热,解毒 | |
连翘 | 20 | 清热,解毒,散结,消肿 | |
桑叶 | 16 | 祛风清热,凉血明目 | |
生地黄 | 18 | 滋阴清热,凉血补血 | |
牡丹皮 | 18 | 清热凉血,和血消瘀 | |
大青叶 | 18 | 清热解毒,凉血止血 | |
紫苏叶 | 16 | 发散表寒,开宣肺气 | |
甘草 | 10 | 和中缓急,润肺,解毒,调和诸药 | |
复方鱼腥草(复方2) Compound Houttuynia (Compound 2) | 鱼腥草 | 16 | 清热解毒,利尿消肿 |
黄芩 | 18 | 泻实火,除湿热,止血,安胎 | |
板蓝根 | 18 | 清热解毒,凉血 | |
连翘 | 20 | 清热,解毒,散结,消肿 | |
金银花 | 20 | 清热,解毒 | |
银翘马勃散(复方3) Yinqiao Mabo powder (Compound 3) | 连翘 | 30 | 清热,解毒,散结,消肿 |
牛蒡子 | 18 | 疏散风热,宣肺透疹,消肿解毒 | |
金银花 | 15 | 清热,解毒 | |
射干 | 9 | 降火,解毒,散血,消痰 | |
马勃 | 6 | 清肺利咽,解毒,止血 |
表 3
改良育阴方(MYY)提取物中代表性化学物质"
化学式 Formula | 名称 Name | 质量 Exact_mass | 测量误差(ppm) Measurement error(ppm) | CAS | Library | 化学结构 Structure |
C6H4O2 | 1, 2-Benzoquinone | 108.021 1 | 2.971 703 44 | 583-63-1 | MetaDNA | ![]() |
C5H10N2O | L-Prolinamide | 114.079 3 | 2.815 271 87 | 7531-52-4 | MetaDNA | ![]() |
C15H18O8 | 1-O-(4-coumaroyl)-β-D-glucose | 326.100 2 | 14.021 680 47 | 7139-64-2 | MetaDNA | ![]() |
C9H18N4O4 | D-Octopine | 246.132 8 | 29.529 685 51 | 34522-32-2 | MetaDNA | ![]() |
C11H20N4O6 | Nopaline | 304.138 3 | 24.608 987 88 | 22350-70-5 | MetaDNA | ![]() |
C9H13N3O4 | Deoxycytidine | 227.090 6 | 6.605 293 218 | 951-77-9 | MetaDNA | ![]() |
C19H26O2 | androst-5-ene-3, 17-dione | 286.193 3 | 23.064 020 6 | 571-36-8 | MetaDNA | ![]() |
C19H28O2 | Androstanedione | 288.208 9 | 1.645 827 722 | 846-46-8 | MetaDNA | ![]() |
C21H28O4 | 11-Dehydrocorticosterone | 344.198 8 | 22.415 016 9 | 72-23-1 | MetaDNA | ![]() |
C27H46O4S | Cholesterol sulfate | 466.311 7 | 7.934 606 831 | 1256-86-6 | MetaDNA | ![]() |
1 |
DIXON L K , SUN H , ROBERTS H . African swine fever[J]. Antiviral Res, 2019, 165, 34- 41.
doi: 10.1016/j.antiviral.2019.02.018 |
2 | 陈画菡, 朱君海, 高飞, 等. 非洲猪瘟检测方法研究进展[J]. 中国兽医杂志, 2024, 60 (5): 91- 100. |
CHEN H H , ZHU J H , GAO F , et al. Research progress of detection methods for African swine fever[J]. Chinese Journal of Veterinary Medicine, 2024, 60 (5): 91- 100. | |
3 |
ARABYAN E , HAKOBYAN A , KOTSINYAN A , et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis[J]. Antiviral Res, 2018, 156, 128- 137.
doi: 10.1016/j.antiviral.2018.06.014 |
4 |
方建国, 施春阳, 汤杰, 等. 大青叶抗内毒素活性部位筛选[J]. 中草药, 2004, 35 (1): 60- 62.
doi: 10.3321/j.issn:0253-2670.2004.01.026 |
FANG J G , SHI C Y , TANG J , et al. Screening of active fraction of antiendotoxin from Folium Isatidis[J]. Chinese Traditional and Herbal Drugs, 2004, 35 (1): 60- 62.
doi: 10.3321/j.issn:0253-2670.2004.01.026 |
|
5 | 黄楠, 张兵, 冯燕, 等. 白及提取物小鼠体内抗流感病毒药效研究[J]. 浙江中医药大学学报, 2019, 43 (8): 734- 742. |
HUANG N , ZHANG B , FENG Y , et al. Study on the anti-influenza virus efficacy of the Bletilla striata extracts in mice[J]. Journal of Zhejiang Chinese Medical University, 2019, 43 (8): 734- 742. | |
6 |
梁怡平, 钟秀会. 中药抗流感病毒的机理与应用前景[J]. 今日畜牧兽医, 2014, (1): 13- 15.
doi: 10.3969/j.issn.1673-4092.2014.01.005 |
LIANG Y P , ZHONG X H . Mechanism and application prospect of Chinese medicine against influenza virus[J]. Animal Husbandry and Veterinary Today, 2014, (1): 13- 15.
doi: 10.3969/j.issn.1673-4092.2014.01.005 |
|
7 |
徐培平, 赵昉, 刘妮, 等. 中药体外防治甲型H1N1流感病毒实验研究[J]. 实用预防医学, 2012, 19 (8): 1121- 1124.
doi: 10.3969/j.issn.1006-3110.2012.08.001 |
XU P P , ZHAO F , LIU N , et al. In vitro study on preventive effects of three Chinese medicines against influenza A (H1N1)[J]. Practical Preventive Medicine, 2012, 19 (8): 1121- 1124.
doi: 10.3969/j.issn.1006-3110.2012.08.001 |
|
8 | 刘廷, 王海丹, 狄留庆, 等. 基于甲型H1N1流感病毒致MDCK细胞损伤保护作用的双黄连组方HPLC特征图谱谱效关系研究[J]. 中国中药杂志, 2015, 40 (21): 4194- 4199. |
LIU T , WANG H D , DI L Q , et al. HPLC specific chromatogram spectrum-effect relationship for Shuanghuanglian on MDCK cell injury induced by influenza A virus (H1N1)[J]. China Journal of Chinese Materia Medica, 2015, 40 (21): 4194- 4199. | |
9 |
宋晓东, 刘哲, 陈敬洲, 等. 体外筛选具有抗柯萨奇病毒作用的中药提取物[J]. 中国药物与临床, 2010, 10 (9): 974- 976.
doi: 10.3969/j.issn.1671-2560.2010.09.003 |
SONG X D , LIU Z , CHEN J Z , et al. Screening of traditional Chinese herbal extracts against Coxsackie virus in vitro[J]. Chinese Remedies & Clinics, 2010, 10 (9): 974- 976.
doi: 10.3969/j.issn.1671-2560.2010.09.003 |
|
10 |
卫文峰, 张国成, 许东亮, 等. 柴胡黄芩炙甘草对小鼠CVB3心肌炎治疗作用的研究[J]. 中国当代儿科杂志, 2003, 5 (3): 223- 225.
doi: 10.3969/j.issn.1008-8830.2003.03.010 |
WEI W F , ZHANG G C , XU D L , et al. Therapeutic effects of bupleurum root, scutellaria root and baked licorice on viral myocarditis caused by coxsackievirus B3 in mice[J]. Chinese Journal of Contemporary Pediatrics, 2003, 5 (3): 223- 225.
doi: 10.3969/j.issn.1008-8830.2003.03.010 |
|
11 |
HAKOBYAN A , ARABYAN E , KOTSINYAN A , et al. Inhibition of African swine fever virus infection by genkwanin[J]. Antiviral Res, 2019, 167, 78- 82.
doi: 10.1016/j.antiviral.2019.04.008 |
12 | 李艳青, 朱秀高, 王晓田. 含金银花复方中药提取物方剂在非洲猪瘟防控中的作用[J]. 今日养猪业, 2021, (5): 88- 89. |
LI Y Q , ZHU X G , WANG X T . The role of Chinese herbal extract formula containing honeysuckle flower in the prevention and control of African swine fever[J]. Including Today's Pig Industry, 2021, (5): 88- 89. | |
13 | 毛世香, 黄金凤, 张方武, 等. 非洲猪瘟的卫气营血辨证及防控[J]. 畜禽业, 2021, 32 (3): 97- 98. |
MAO S X , HUANG J F , ZHANG F W , et al. Differentiation of Weiqi Ying blood syndrome and prevention and control of African swine fever[J]. Livestock and Poultry Industry, 2021, 32 (3): 97- 98. | |
14 |
LIU Y J , ZHANG X H , LIU Z X , et al. Toosendanin suppresses African swine fever virus replication through upregulating interferon regulatory factor 1 in porcine alveolar macrophage cultures[J]. Front Microbiol, 2022, 13, 970501.
doi: 10.3389/fmicb.2022.970501 |
15 |
赵旭阳, 靳家鑫, 路闻龙, 等. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53 (7): 2074- 2082.
doi: 10.11843/j.issn.0366-6964.2022.07.005 |
ZHAO X Y , JIN J X , LU W L , et al. Advances in the molecular mechanism of immune escape of African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2074- 2082.
doi: 10.11843/j.issn.0366-6964.2022.07.005 |
|
16 | GARCÍA-BELMONTE R , PÉREZ-NÚÑEZ D , PITTAU M , et al. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway[J]. J Virol, 2019, 93 (12): e02298- 18. |
17 |
RASMUSSEN J A , VILLUMSEN K R , ERNST M , et al. A multi-omics approach unravels metagenomic and metabolic alterations of a probiotic and synbiotic additive in rainbow trout (Oncorhynchus mykiss)[J]. Microbiome, 2022, 10 (1): 21.
doi: 10.1186/s40168-021-01221-8 |
18 |
NAVARRO-REIG M , JAUMOT J , GARCÍA-REIRIZ A , et al. Evaluation of changes induced in rice metabolome by Cd and Cu exposure using LC-MS with XCMS and MCR-ALS data analysis strategies[J]. Anal Bioanal Chem, 2015, 407 (29): 8835- 8847.
doi: 10.1007/s00216-015-9042-2 |
19 | WISHART D S , TZUR D , KNOX C , et al. HMDB: the human metabolome database[J]. Nucl Acids Res, 2007, 35 (suppl_1): D521- D526. |
20 |
HORAI H , ARITA M , KANAYA S , et al. MassBank: a public repository for sharing mass spectral data for life sciences[J]. J Mass Spectrom, 2010, 45 (7): 703- 714.
doi: 10.1002/jms.1777 |
21 | SUD M , FAHY E , COTTER D , et al. LMSD: LIPID MAPS structure database[J]. Nucl Acids Res, 2007, 35 (suppl_1): D527- D532. |
22 |
ABDELRAZIG S , SAFO L , RANCE G A , et al. Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling[J]. RSC Adv, 2020, 10 (54): 32548- 32560.
doi: 10.1039/D0RA05326K |
23 |
MELONI D , FRANZONI G , OGGIANO A . Cell lines for the development of African swine fever virus vaccine candidates: an update[J]. Vaccines, 2022, 10 (5): 707.
doi: 10.3390/vaccines10050707 |
24 |
TATOYAN M R , IZMAILYAN R A , SEMERJYAN A B , et al. Patterns of alveolar macrophage activation upon attenuated and virulent African swine fever viruses in vitro[J]. Comp Immunol Microbiol Infect Dis, 2020, 72, 101513.
doi: 10.1016/j.cimid.2020.101513 |
25 | 徐晓曦, 范传园. 中医药对非洲猪瘟防控策略探析[J]. 中兽医学杂志, 2019, (4): 86- 89. |
XU X X , FAN C Y . Analysis on prevention and control strategy of African swine fever by traditional Chinese medicine[J]. Journal of Chinese Veterinary Medicine, 2019, (4): 86- 89. | |
26 | 李飞翔. 运用中医温病学说防控非洲猪瘟[J]. 畜牧兽医科学, 2019, (20): 82- 83. |
LI F X . Prevention and control of African swine fever with the theory of febrile disease in traditional Chinese medicine[J]. Animal Husbandry and Veterinary Science, 2019, (20): 82- 83. | |
27 | 南京中医药大学《新编温病学》编委会. 新编温病学[M]. 北京: 学苑出版社, 2003. |
Nanjing University of Traditional Chinese Medicine, "New edition of Febrile disease" Edilorial Board" . New edition of febrile diseases[M]. Beijing: Academy Press, 2003. | |
28 |
陈利平, 王发渭, 郝爱真, 等. 中医对传染性疾病的认识与防治[J]. 中华医院感染学杂志, 2008, 18 (11): 1587- 1588.
doi: 10.3321/j.issn:1005-4529.2008.11.033 |
CHEN L P , WANG F W , HAO A Z , et al. View of TCM on epidemic diseases and their preyention and treatment[J]. Chinese Journal of Nosocomiology, 2008, 18 (11): 1587- 1588.
doi: 10.3321/j.issn:1005-4529.2008.11.033 |
|
29 | 王志旺, 刘雪枫, 妥海燕, 等. 育阴软肝中药对实验性肝损伤的保护作用[J]. 中国应用生理学杂志, 2015, 31 (1): 76- 79. |
WANG Z W , LIU X F , TUO H Y , et al. The protective effect of Yuyin Ruangan Decoction on experimental hepatic injury[J]. Chinese Journal of Applied Physiology, 2015, 31 (1): 76- 79. | |
30 | 王志旺, 付晓艳, 程小丽, 等. 育阴软肝颗粒剂对肝纤维化大鼠TGF-β1表达的影响[J]. 中国应用生理学杂志, 2018, 34 (2): 169- 172. |
WANG Z W , FU X Y , CHENG X L , et al. Effect of Yuyin Ruangan Granule on TGF-β1 expression in hepatic fibrosis rats[J]. Chinese Journal of Applied Physiology, 2018, 34 (2): 169- 172. | |
31 |
WEI S J , HE Q M , ZHANG Q , et al. Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren's syndrome: A review[J]. J Integr Med, 2021, 19 (3): 191- 202.
doi: 10.1016/j.joim.2021.01.008 |
32 |
AFONSO C L , ALCARAZ C , BRUN A , et al. Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus[J]. Virology, 1992, 189 (1): 368- 373.
doi: 10.1016/0042-6822(92)90718-5 |
33 | SÁNCHEZ E G , PÉREZ-NÚÑEZ D , REVILLA Y . Development of vaccines against African swine fever virus[J]. Virus Res, 2019, 265, 150- 155. |
34 | MAZUR-PANASIUK N , WOŹNIAKOWSKI G , NIEMCZUK K . The first complete genomic sequences of African swine fever virus isolated in Poland[J]. Sci Rep, 2019, 9 (1): 4556. |
35 | LIU Q , MA B T , QIAN N C , et al. Structure of the African swine fever virus major capsid protein p72[J]. Cell Res, 2019, 29 (11): 953- 955. |
36 | SCHNEIDER W M , CHEVILLOTTE M D , RICE C M . Interferon-stimulated genes: a complex web of host defenses[J]. Annu Rev Immunol, 2014, 32, 513- 545. |
37 | BRASS A L , HUANG I C , BENITA Y , et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus[J]. Cell, 2009, 139 (7): 1243- 1254. |
38 | LEWIN A R , REID L E , MCMAHON M , et al. Molecular analysis of a human interferon-inducible gene family[J]. Eur J Biochem, 1991, 199 (2): 417- 423. |
39 | HUANG I C , BAILEY C C , WEYER J L , et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus[J]. PLoS Pathog, 2011, 7 (1): e1001258. |
40 | ZHOU W , WHITELEY A T , DE OLIVEIRA MANN C C , et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance[J]. Cell, 2018, 174 (2): 300- 311. e11. |
[1] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
[2] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[3] | 闫文倩, 侯景, 杨金柯, 郝雨, 杨行, 史喜绢, 张大俊, 别鑫恬, 陈国辉, 陈玲玲, 何路, 赵美玉, 赵思越, 郑海学, 张克山. 非洲猪瘟病毒D1133 L蛋白单克隆抗体抑制其复制[J]. 畜牧兽医学报, 2024, 55(2): 854-859. |
[4] | 吴梦丽, 孙华林, 杨吉飞, 赵亚茹, 关贵全, 殷宏, 牛庆丽. 稳定表达猪BRD4-BD1/2蛋白的猪肺泡巨噬细胞传代细胞系的构建及其用于ASFV增殖的效果观察[J]. 畜牧兽医学报, 2024, 55(10): 4646-4659. |
[5] | 刘传霞, 王晓, 李雪雯, 鲍苗菲, 李婷婷, 陈欣, 翁长江, 郑君. 非洲猪瘟病毒pE120R蛋白单克隆抗体的制备[J]. 畜牧兽医学报, 2024, 55(1): 388-394. |
[6] | 王慧, 冯保亮, 吴丹, 向光明, 王楠, 牟玉莲, 李奎, 刘志国. CD163基因在猪繁殖与呼吸综合征抗病育种中的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3127-3138. |
[7] | 冯永智, 龚婷, 吴东东, 高琦, 郑晓宇, 张桂红, 孙彦阔. 影响非洲猪瘟病毒对培养细胞感染性的因素分析[J]. 畜牧兽医学报, 2023, 54(8): 3406-3414. |
[8] | 刘桃雪, 苏冰倩, 齐艳丽, 郭江涛, 刘忠虎, 褚贝贝, 王江, 曾磊. 非洲猪瘟病毒p30蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(8): 3415-3423. |
[9] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[10] | 王映, 朱家宏, 赵加凯, 纪品品, 陈旭, 张路, 刘宝元, 孙亚妮, 赵钦. 抗非洲猪瘟病毒NP419L蛋白纳米抗体的筛选鉴定及其在抗体检测中的初步应用[J]. 畜牧兽医学报, 2023, 54(6): 2509-2520. |
[11] | 刘文豪, 朱彦策, 张冬萱, 王智豪, 张超. 稳定表达非洲猪瘟病毒E165R蛋白PK 15细胞系的构建[J]. 畜牧兽医学报, 2023, 54(6): 2662-2666. |
[12] | 王国超, 赵亚茹, 张忠辉, 张玉龙, 白鸽, 耿抒贤, 樊洁, 杨吉飞, 关贵全, 殷宏, 罗建勋, 牛庆丽. 非洲猪瘟病毒RNA聚合酶亚基D205R基因生物信息学分析及多克隆抗体制备[J]. 畜牧兽医学报, 2023, 54(5): 2042-2049. |
[13] | 张婷, 冯涛, 杨金柯, 郝雨, 杨行, 张大俊, 史喜绢, 闫文倩, 陈玲玲, 刘湘涛, 郑海学, 张克山. 条件性敲除D1133L基因的重组非洲猪瘟病毒的构建及增殖特性[J]. 畜牧兽医学报, 2023, 54(2): 706-714. |
[14] | 张芳源, 杨大为, 仇德洋, 姜国骞, 李桂梅, 单虎. 非洲猪瘟病毒P30蛋白的表达及抗体液相芯片检测方法的建立[J]. 畜牧兽医学报, 2023, 54(10): 4300-4310. |
[15] | 齐艳丽, 刘桃雪, 于海深, 张超, 鲁维飞, 王江, 褚贝贝, 张改平. 非洲猪瘟病毒p54蛋白单克隆抗体制备及其抗原表位鉴定[J]. 畜牧兽医学报, 2023, 54(1): 281-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||