畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5325-5339.doi: 10.11843/j.issn.0366-6964.2024.12.001
吴丹妮1(), 谢遇春5, 秦箐1, 张崇妍1, 徐晓龙1, 赵丹1, 兰茗熙1, 杨继4, 徐松松4, 刘志红1,2,3,*(
)
收稿日期:
2024-05-08
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
刘志红
E-mail:2604879241@qq.com;Liuzh7799@163.com
作者简介:
吴丹妮(2000-),女,内蒙古巴彦淖尔人,硕士,主要从事动物遗传育种研究,E-mail: 2604879241@qq.com
基金资助:
WU Danni1(), XIE Yuchun5, QIN Qing1, ZHANG Chongyan1, XU Xiaolong1, ZHAO Dan1, LAN Mingxi1, YANG Ji4, XU Songsong4, LIU Zhihong1,2,3,*(
)
Received:
2024-05-08
Online:
2024-12-23
Published:
2024-12-27
Contact:
LIU Zhihong
E-mail:2604879241@qq.com;Liuzh7799@163.com
摘要:
肌细胞(又名肌纤维) 是组成骨骼肌的基本单位, 约占畜禽机体的50% 左右, 与畜禽产肉性能、骨骼保护密切相关, 对调节畜禽机体代谢和内分泌有重要作用, 同时也为畜禽的运动提供了动力。骨骼肌是一种较为复杂的组织, 而组成这些组织的基本单位是肌细胞, 骨骼肌在发育时期需要多种类型的单核和多核细胞相互作用, 这是形成优质肉类的关键。近些年, 随着科学技术的快速发展, 对鉴定骨骼肌发育相关细胞有了更多且全面的技术, 而单细胞测序技术在其中运用的最为广泛, 它的运用对组成骨骼肌的细胞类型和相关细胞发育异质性的研究提供了技术支持, 对肉品质的研究有重大意义。本文综述了通过细胞形态学观察、分子标记物、免疫组织化学、免疫荧光、原位杂交、单细胞测序的方法鉴定与骨骼肌发育过程相关的细胞, 归纳与骨骼肌发育相关细胞的标记基因, 为了解骨骼肌的结构和功能, 为探索骨骼肌发育机制提供参考, 为肉品质的研究提供理论基础, 也在不同品种的个体选育中具有重要意义和实践价值。
中图分类号:
吴丹妮, 谢遇春, 秦箐, 张崇妍, 徐晓龙, 赵丹, 兰茗熙, 杨继, 徐松松, 刘志红. 畜禽肌纤维发育相关细胞种类及鉴定方法的研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5325-5339.
WU Danni, XIE Yuchun, QIN Qing, ZHANG Chongyan, XU Xiaolong, ZHAO Dan, LAN Mingxi, YANG Ji, XU Songsong, LIU Zhihong. Research Progress on Cell Types and Identification Methods Related to Muscle Fiber Development in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5325-5339.
表 1
不同畜禽骨骼肌中细胞类型组成的异同"
动物 Animal | 肌肉部位 Muscle types | 时期 Period | 不同发育时期细胞类型变化情况 Changes of cell types at different developmental stages | 采用的技术 Used technology | 主要细胞类型 Main cell types | 参考文献 Reference |
牛 Cattle | 背最长肌 | 胚胎期(怀孕后60 d)、哺乳期(出生后4月龄)和成年期(出生后24月龄) | 胚胎期成纤维细胞占比最多;哺乳期内皮细胞占比最多,其次是IIX型肌纤维;成年期IIX型肌纤维占比最多 | 10×Genomics单细胞RNA测序 | 18个主要细胞类型:脂肪细胞、内皮细胞、红系细胞、成纤维细胞、淋巴细胞、单核细胞、成肌细胞、肌细胞、肌源性祖细胞、中性粒细胞、周细胞、雪旺氏细胞、腱细胞、Ⅰ型纤维1、Ⅰ型纤维2、IIA型纤维1、IA型纤维2和IIX型纤维 | [ |
猪 Pig | 背最长肌 | 1日龄新生猪 | / | 10×Genomics单细胞RNA测序 | 11种不同的细胞类群,包括内皮细胞(24.39%)、肌管(18.82%)、纤维成脂祖细胞(18.11%)、卫星细胞(16.74%)、成肌细胞(3.99%)、肌细胞(5.74%)、雪旺细胞(3.81%)、平滑肌细胞(3.22%)、树突状细胞(2.99%)、周细胞(1.86%)和中性粒细胞(0.33%) | [ |
鸡 Chicken | 胸肌 | 生长早期(孵化后第5天)和快速生长期(第100天) | 在生长早期鉴定到了5个成肌细胞群和2个脂肪细胞群,在快速生长期鉴定到了1个成肌细胞群和脂肪细胞群 | 10×Genomics单细胞RNA测序 | 生长早期(孵化后第5天)鉴定出4种细胞类型:成肌细胞、脂肪细胞、红细胞和其他细胞。快速生长期(第100天)鉴定出6种细胞类型:成肌细胞、脂肪细胞、干细胞、红细胞、内皮细胞和其他细胞 | [ |
1 | 杨飞云. 猪骨骼肌肌纤维类型分布及转化的分子机理研究[D]. 雅安: 四川农业大学, 2008. |
YANG F Y. Molecular mechanism of myofiber type distribution and transformation in skeletal muscle of pigs[D]. Yaan: Sichuan Agricultural University, 2008. (in Chinese) | |
2 |
CAI C C , YUE Y , YUE B L . Single-cell RNA sequencing in skeletal muscle developmental biology[J]. Biomed Pharmacother, 2023, 162, 114631.
doi: 10.1016/j.biopha.2023.114631 |
3 |
XU D D , WAN B Y , QIU K , et al. Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J]. Adv Sci (Weinh), 2023, 10 (35): e2305080.
doi: 10.1002/advs.202305080 |
4 |
BRYSON-RICHARDSON R J , CURRIE P D . The genetics of vertebrate myogenesis[J]. Nat Rev Genet, 2008, 9 (8): 632- 646.
doi: 10.1038/nrg2369 |
5 |
PRASAD V , MILLAY D P . Skeletal muscle fibers count on nuclear numbers for growth[J]. Semin Cell Dev Biol, 2021, 119, 3- 10.
doi: 10.1016/j.semcdb.2021.04.015 |
6 |
ALLEN R E , MERKEL R A , YOUNG R B . Cellular aspect of muscle growth: myogenic cell proliferation[J]. J Anim Sci, 1979, 49 (1): 115- 127.
doi: 10.2527/jas1979.491115x |
7 |
TE PAS M F W , DE WIT A A W , PRIEM J , et al. Transcriptome expression profiles in prenatal pigs in relation to myogenesis[J]. J Muscle Res Cell Motil, 2005, 26 (2-3): 157- 165.
doi: 10.1007/s10974-005-7004-6 |
8 |
HAWKE T J , GARRY D J . Myogenic satellite cells: physiology to molecular biology[J]. J Appl Physiol, 2001, 91 (2): 534- 551.
doi: 10.1152/jappl.2001.91.2.534 |
9 | 贾径. 鸭MyoG、MRF4基因的克隆及其在骨骼肌组织中的发育表达研究[D]. 雅安: 四川农业大学, 2009. |
JIA J. Clone and developmental expression of MyoG and MRF4 genes in duck skeletal muscle[D]. Yaan: Sichuan Agricultural University, 2009. (in Chinese) | |
10 | 张江丽. 胚胎发育中骨骼肌组织的形成及调控[J]. 安徽农业科技, 2007, 35 (21): 6447-6448, 6566. |
ZHANG J L . Morphogenesis and regulation of skeletal muscle tissue in the embryo development[J]. Journal of Anhui Agricultural Sciences, 2007, 35 (21): 6447-6448, 6566. | |
11 |
TANG Z L , LI Y , WAN P , et al. LongSAGE analysis of skeletal muscle at three prenatal stages in TongCheng and Landrace pigs[J]. Genome Biol, 2007, 8 (6): R115.
doi: 10.1186/gb-2007-8-6-r115 |
12 |
BUCKINGHAM M , VINCENT S D . Distinct and dynamic myogenic populations in the vertebrate embryo[J]. Curr Opin Genet Dev, 2009, 19 (5): 444- 453.
doi: 10.1016/j.gde.2009.08.001 |
13 | 杨朝永, 张若彤, 陈若楠, 等. 鸡胚胎期肌纤维的发育特征及相关基因表达研究[J]. 中国畜牧杂志, 2023, 59 (9): 171- 176. |
YANG C Y , ZHANG R T , CHEN R N , et al. Study on the development characteristics and related gene expression of chicken embryonic muscle fibers[J]. Chinese Journal of Animal Science, 2023, 59 (9): 171- 176. | |
14 | 彭颖. Dll1在小鼠骨骼肌发育和再生中的作用及机制研究[D]. 杨陵: 西北农林科技大学, 2020. |
PANG Y. The Function and mechanism of Dll1 in the development and regeneration of mouse skeletal muscle[D]. Yangling: Northwest A & F University, 2020. (in Chinese) | |
15 | 李雪娇, 刘晨曦, 杨开伦, 等. 德美羊与中美羊胎儿期骨骼肌组织学结构发育特征差异性研究[J]. 草食家畜, 2017, (4): 1- 6. |
LI X J , LIU C X , YANG K L , et al. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese Merino Sheep[J]. Grass-Feeding Livestock, 2017, (4): 1- 6. | |
16 |
WANG T J , LIU C , FENG C P , et al. IUGR alters muscle fiber development and proteome in fetal pigs[J]. Front Biosci (Landmark Ed), 2013, 18 (2): 598- 607.
doi: 10.2741/4123 |
17 |
BÉRARD J , KALBE C , LÖSEL D , et al. Potential sources of early-postnatal increase in myofibre number in pig skeletal muscle[J]. Histochem Cell Biol, 2011, 136 (2): 217- 225.
doi: 10.1007/s00418-011-0833-z |
18 |
VELOTTO S , CRASTO A . Histochemical and morphometrical characterization and distribution of fibre types in four muscles of ostrich (Struthio camelus)[J]. Anat, Histol, Embryol, 2004, 33 (5): 251- 256.
doi: 10.1111/j.1439-0264.2004.00535.x |
19 | 欧秀琼, 梅学华, 李星, 等. 猪肌肉肌纤维类型组成的影响因素研究进展[J]. 饲料工业, 2023, 44 (15): 30- 35. |
OU X Q , MEI X H , LI X , et al. Research progress on influencing factors of muscle fiber type composition in pigs[J]. Feed Industry, 2023, 44 (15): 30- 35. | |
20 | 高一, 刘庆雨, 李兆华, 等. 新吉林黑猪不同部位肌纤维特性研究[J]. 中国畜牧杂志, 2023, 59 (11): 170- 174. |
GAO Y , LIU Q Y , LI Z H , et al. Study on the characteristics of muscle fiber in differentpartsof new Jilin black pig[J]. Chinese Journal of Animal Science, 2023, 59 (11): 170- 174. | |
21 |
杨飞云, 陈代文, 黄金秀, 等. 猪背最长肌肌纤维类型的发育性变化及品种与营养影响特点[J]. 畜牧兽医学报, 2008, 39 (12): 1701- 1708.
doi: 10.3321/j.issn:0366-6964.2008.12.012 |
YANG F Y , CHEN D W , HUANG J X , et al. Developmental changes of myofiber types in longissimus dorsi muscle of rongchang and DLY pigs under different nutrient condition[J]. Acta Veterinaria et Zootechnica Sinica, 2008, 39 (12): 1701- 1708.
doi: 10.3321/j.issn:0366-6964.2008.12.012 |
|
22 |
WENG K Q , HUO W R , LI Y , et al. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers[J]. Poult Sci, 2022, 101 (1): 101537.
doi: 10.1016/j.psj.2021.101537 |
23 |
杨玉莹, 张一敏, 毛衍伟, 等. 不同部位牦牛肉肌纤维特性与肉品质差异[J]. 食品科学, 2019, 40 (21): 72- 77.
doi: 10.7506/spkx1002-6630-20181025-296 |
YANG Y Y , ZHANG Y M , MAO Y W , et al. Differences in myofiber characteristics and meat quality of different yak muscles[J]. Food Science, 2019, 40 (21): 72- 77.
doi: 10.7506/spkx1002-6630-20181025-296 |
|
24 | 郎玉苗. 肌纤维类型对牛肉嫩度的影响机制研究[D]. 北京: 中国农业科学院, 2016. |
LANG Y M. Mechanism and effects of muscle fiber types on beef tenderness[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese) | |
25 | LEFAUCHEUR L . Myofiber typing and pig meat production[J]. Slov Vet Zborn, 2001, 38 (1): 5- 33. |
26 | 丁文淇, 图格琴, 任秀娟, 等. 胎儿期与成年期蒙古马骨骼肌肌纤维类型转化研究[J]. 畜牧兽医学报, 2022, 53 (1): 88- 99. |
DING W Q , BAO T G Q , REN X J , et al. Study on muscle fiber type transformation of mongolian horse during fetal and adult period[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (1): 88- 99. | |
27 | 周力, 高占红, 侯生珍, 等. 初生和成年黑藏羊肉品质与肌纤维特性差异分析[J]. 畜牧兽医学报, 2022, 53 (3): 700- 710. |
ZHOU L , GAO Z H , HOU S Z , et al. Difference analysis of meat quality and muscle fiber characteristics between newborn and adult Black Tibetan sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (3): 700- 710. | |
28 |
CHO D S , SCHMITT R E , DASGUPTA A , et al. Single-cell deconstruction of post-sepsis skeletal muscle and adipose tissue microenvironments[J]. J Cachexia Sarcopenia Muscle, 2020, 11 (5): 1351- 1363.
doi: 10.1002/jcsm.12596 |
29 |
CAI S F , HU B , WANG X Y , et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig[J]. BMC Biol, 2023, 21 (1): 19.
doi: 10.1186/s12915-023-01519-z |
30 |
KALUCKA J , DE ROOIJ L P M H , GOVEIA J , et al. Single-cell transcriptome atlas of murine endothelial cells[J]. Cell, 2020, 180 (4): 764- 779.e20.
doi: 10.1016/j.cell.2020.01.015 |
31 |
PAIK D T , TIAN L , WILLIAMS I M , et al. Single-cell RNA sequencing unveils unique transcriptomic signatures of organ-specific endothelial cells[J]. Circulation, 2020, 142 (19): 1848- 1862.
doi: 10.1161/CIRCULATIONAHA.119.041433 |
32 | 于敏, 王伟卓, 郭雄. 硒蛋白在内皮细胞发育和心肌功能中的重要作用[J]. 国外医学医学地理分册, 2010, 31 (1): 44- 48. |
YU M , WANG W Z , GUO X . The important role of selenoproteins in endothelial cell development and myocardial function[J]. Foreign Medical Sciences Section of Medgeography, 2010, 31 (1): 44- 48. | |
33 |
FERRERO E , FERRERO M E , PARDI R , et al. The platelet endothelial cell adhesion molecule-1 (PECAM1) contributes to endothelial barrier function[J]. FEBS Lett, 1995, 374 (3): 323- 326.
doi: 10.1016/0014-5793(95)01110-Z |
34 |
ETICH J , BERGMEIER V , FRIE C , et al. PECAM1+/Sca1+/CD38+ vascular cells transform into myofibroblast-like cells in skin wound repair[J]. PLoS One, 2013, 8 (1): e53262.
doi: 10.1371/journal.pone.0053262 |
35 |
OKABE Y . Molecular control of the identity of tissue-resident macrophages[J]. Int Immunol, 2018, 30 (11): 485- 491.
doi: 10.1093/intimm/dxy019 |
36 |
DOMÍNGUEZ CONDE C , XU C , JARVIS L B , et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans[J]. Science, 2022, 376 (6594): eabl5197.
doi: 10.1126/science.abl5197 |
37 |
XU D D , WAN B Y , QIU K , et al. Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J]. Adv Sci (Weinh), 2023, 10 (35): e2305080.
doi: 10.1002/advs.202305080 |
38 |
ZHAO F R , ZHAO C , XU T P , et al. Single-cell and bulk RNA sequencing analysis of B cell marker genes in TNBC TME landscape and immunotherapy[J]. Front Immunol, 2023, 14, 1245514.
doi: 10.3389/fimmu.2023.1245514 |
39 |
COULIS G , JAIME D , GUERRERO-JUAREZ C , et al. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis[J]. Sci Adv, 2023, 9 (27): eadd9984.
doi: 10.1126/sciadv.add9984 |
40 |
LENDAHL U , MUHL L , BETSHOLTZ C . Identification, discrimination and heterogeneity of fibroblasts[J]. Nat Commun, 2022, 13 (1): 3409.
doi: 10.1038/s41467-022-30633-9 |
41 | 戴生明. Myofibroblast宜译为"肌性成纤维细胞"而不是"肌成纤维细胞"[J]. 中国医学前沿杂志(电子版), 2023, 15 (7): 81. |
DAI S M . Myofibroblast should be translated as 'myofibroblast' rather than 'myofibroblast'[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2023, 15 (7): 81. | |
42 |
FAN C Q , LIAO M C , XIE L C , et al. Single-cell transcriptome integration analysis reveals the correlation between mesenchymal stromal cells and fibroblasts[J]. Front Genet, 2022, 13, 798331.
doi: 10.3389/fgene.2022.798331 |
43 |
COLLINS B C , KARDON G . It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration[J]. Development, 2021, 148 (21): dev199861.
doi: 10.1242/dev.199861 |
44 |
WOSCZYNA M N , KONISHI C T , PEREZ-CARBAJAL E E , et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Rep, 2019, 27 (7): 2029- 2035.e5.
doi: 10.1016/j.celrep.2019.04.074 |
45 |
CHEN W T , YOU W J , VALENCAK T G , et al. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease[J]. Ageing Res Rev, 2022, 80, 101682.
doi: 10.1016/j.arr.2022.101682 |
46 |
PLIKUS M V , WANG X J , SINHA S , et al. Fibroblasts: origins, definitions, and functions in health and disease[J]. Cell, 2021, 184 (15): 3852- 3872.
doi: 10.1016/j.cell.2021.06.024 |
47 |
XU Z Y , YOU W J , CHEN W T , et al. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (1): 109- 129.
doi: 10.1002/jcsm.12643 |
48 |
UEZUMI A , FUKADA S , YAMAMOTO N , et al. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle[J]. Cell Death Dis, 2014, 5 (4): e1186.
doi: 10.1038/cddis.2014.161 |
49 | 蔡翠翠. 基于scRNA-seq及scATAC-seq构建牛骨骼肌发育的单细胞图谱[D]. 杨陵: 西北农林科技大学, 2023. |
CAI C C. Single cell atlas construction of bovine skeletal muscle development based on scRNA-seq and scATAC-seq[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
50 |
QIU X , WANG H Y , YANG Z Y , et al. Uncovering the prominent role of satellite cells in paravertebral muscle development and aging by single-nucleus RNA sequencing[J]. Genes Dis, 2023, 10 (6): 2597- 2613.
doi: 10.1016/j.gendis.2023.01.005 |
51 | DUMONT N A , BENTZINGER C F , SINCENNES M C , et al. Satellite cells and skeletal muscle regeneration[J]. Compr Physiol, 2015, 5 (3): 1027- 1059. |
52 |
SEALE P , SABOURIN L A , GIRGIS-GABARDO A , et al. Pax7 is required for the specification of myogenic satellite cells[J]. Cell, 2000, 102 (6): 777- 786.
doi: 10.1016/S0092-8674(00)00066-0 |
53 | 孙伟. 关于绵羊肌肉生长遗传调控机理的研究[D]. 北京: 中国农业科学院, 2011. |
SUN W. Study on genetic control mechanism of sheep muscle growth[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese) | |
54 | 赵欢乐. 梅花鹿肌肉组织生肌调节因子(MRFs)基因的差异表达研究[D]. 哈尔滨: 东北林业大学, 2022. |
ZHAO H L. Differential expression of myogenic regulatory factors gene in Sika Deer muscle tissue[D]. Harbin: Northeast Forestry University, 2022. (in Chinese) | |
55 |
YIN Z , LIN J X , YAN R J , et al. Atlas of musculoskeletal stem cells with the soft and hard tissue differentiation architecture[J]. Adv Sci (Weinh), 2020, 7 (23): 2000938.
doi: 10.1002/advs.202000938 |
56 |
GIORDANI L , HE G J , NEGRONI E , et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J]. Mol Cell, 2019, 74 (3): 609- 621.e6.
doi: 10.1016/j.molcel.2019.02.026 |
57 |
吴震, 张子旺, 王晓艾, 等. 转录因子SCX和MKX在肌腱发育和分化中的研究进展[J]. 中国细胞生物学学报, 2016, 38 (12): 1549- 1554.
doi: 10.11844/cjcb.2016.12.0101 |
WU Z , ZHANG Z W , WANG X A , et al. Transcription factors SCX and MKX research progress in tendon development and differentiation[J]. Chinese Journal of Cell Biology, 2016, 38 (12): 1549- 1554.
doi: 10.11844/cjcb.2016.12.0101 |
|
58 |
XU P , ZHANG B Y , DENG B , et al. Mechanical stretch facilitates tenomodulin expression to induce tenocyte migration via MAPK signaling pathway[J]. Arch Biochem Biophys, 2023, 734, 109486.
doi: 10.1016/j.abb.2022.109486 |
59 |
LI P S , GONG Z , SHULTZ L D , et al. Mesenchymal stem cells: from regeneration to cancer[J]. Pharmacol Therapeut, 2019, 200, 42- 54.
doi: 10.1016/j.pharmthera.2019.04.005 |
60 |
VEZZANI B , PIERANTOZZI E , SORRENTINO V . Not all pericytes are born equal: pericytes from human adult tissues present different differentiation properties[J]. Stem Cells Dev, 2016, 25 (20): 1549- 1558.
doi: 10.1089/scd.2016.0177 |
61 |
COLLINS B C , KARDON G . It takes all kinds: heterogeneity among satellite cells and fibro-adipogenic progenitors during skeletal muscle regeneration[J]. Development, 2021, 148 (21): dev199861.
doi: 10.1242/dev.199861 |
62 |
CHEN B D , SHAN T Z . The role of satellite and other functional cell types in muscle repair and regeneration[J]. J Muscle Res Cell Motil, 2019, 40 (1): 1- 8.
doi: 10.1007/s10974-019-09511-3 |
63 |
QUINN L S , ONG L D , ROEDER R A . Paracrine control of myoblast proliferation and differentiation by fibroblasts[J]. Dev Biol, 1990, 140 (1): 8- 19.
doi: 10.1016/0012-1606(90)90048-N |
64 |
AHMAD S S , CHUN H J , AHMAD K , et al. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production[J]. J Anim Sci Technol, 2023, 65 (1): 16- 31.
doi: 10.5187/jast.2022.e114 |
65 |
AHMAD S S , AHMAD K , LEE E J , et al. Implications of insulin-like growth factor-1 in skeletal muscle and various diseases[J]. Cells, 2020, 9 (8): 1773.
doi: 10.3390/cells9081773 |
66 |
XIAO W , JIANG N J , JI Z Y , et al. Single-cell RNA sequencing reveals the cellular landscape of Longissimus dorsi in a newborn Suhuai Pig[J]. Int J Mol Sci, 2024, 25 (2): 1204- 1204.
doi: 10.3390/ijms25021204 |
67 |
王铁, 王子旭, 陈耀星. 鸡胚脾脏石蜡切片制作及H.E.染色方法改良的探讨[J]. 中国兽医杂志, 2013, 49 (9): 86- 87.
doi: 10.3969/j.issn.0529-6005.2013.09.038 |
WANG T , WANG Z X , CHEN Y X . Study on the production of paraffin sections of chickenembryo spleen and the improvement of H.E. staining method[J]. Chinese Journal of Veterinary Medicine, 2013, 49 (9): 86- 87.
doi: 10.3969/j.issn.0529-6005.2013.09.038 |
|
68 | 王秀文. 石蜡切片法中染色技术的改良[J]. 植物研究, 2015, 35 (1): 158- 160. |
WANG X W . The improved stained methods of paraffin sections production[J]. Bulletin of Botanical Research, 2015, 35 (1): 158- 160. | |
69 |
CHAN J K C . The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology[J]. Int J Surg Pathol, 2014, 22 (1): 12- 32.
doi: 10.1177/1066896913517939 |
70 | CARDIFF R D , MILLER C H , MUNN R J . Manual hematoxylin and eosin staining of mouse tissue sections[J]. Cold Spring Harb Protoc, 2014, 2014 (6): 655- 658. |
71 | CHEN L L , JIN Y Q , YANG X N , et al. Fat tissue, a potential Schwann cell reservoir: isolation and identification of adipose-derived Schwann cells[J]. Am J Transl Res, 2017, 9 (5): 2579- 2594. |
72 |
HAO Y H , LIU Z Z , ZHAO H , et al. Identification and characterization of murine adipose tissue-derived somatic stem cells of Shenque (CV8) acupoint[J]. Chin Med J, 2021, 134 (22): 2730- 2737.
doi: 10.1097/CM9.0000000000001850 |
73 | 王东林, 毛宝龄. 生肌调节因子及其作用机理[J]. 国外医学(分子生物学分册), 1995, 17 (4): 157- 160. |
WANG D L , MAO B L . Myogenic regulatory factor and its mechanism of action[J]. Journal of Medical Molecular Biology, 1995, 17 (4): 157- 160. | |
74 | 韩建刚, 关伟军, 何晓红, 等. 生肌调节因子在绵羊不同胎儿期心肌和骨骼肌中的表达[J]. 中国畜牧兽医, 2020, 47 (10): 3123- 3131. |
HAN J G , GUAN W J , HE X H , et al. Expression of myogenic regulatory factors in myocardium and skeletal muscle at different fetal stages[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (10): 3123- 3131. | |
75 |
NAIDU P S , LUDOLPH D C , TO R Q , et al. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis[J]. Mol Cell Biol, 1995, 15 (5): 2707- 2718.
doi: 10.1128/MCB.15.5.2707 |
76 |
BEAUCHAMP J R , HESLOP L , YU D S W , et al. Expression of Cd34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells[J]. J Cell Biol, 2000, 151 (6): 1221- 1234.
doi: 10.1083/jcb.151.6.1221 |
77 |
HERNÁNDEZ-HERNÁNDEZ J M , GARCÍA-GONZÁLEZ E G , BRUN C E , et al. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration[J]. Semin Cell Dev Biol, 2017, 72, 10- 18.
doi: 10.1016/j.semcdb.2017.11.010 |
78 |
MOLKENTIN J D , OLSON E N . Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors[J]. Proc Natl Acad Sci U S A, 1996, 93 (18): 9366- 9373.
doi: 10.1073/pnas.93.18.9366 |
79 | IM K, MARENINOV S, DIAZ M F P, et al. An introduction to performing immunofluorescence staining[M]//YONG W H. Biobanking: Methods and Protocols. New York: Humana, 2019: 299-311. |
80 | FENG X S , NAZ F , JUAN A H , et al. Identification of skeletal muscle satellite cells by immunofluorescence with Pax7 and Laminin Antibodies[J]. J Vis Exp, 2018, (134): 57212. |
81 | DUMONT N A, RUDNICKI M A. Characterizing satellite cells and myogenic progenitors during skeletal muscle regeneration[M]//PELLICCIARI C, BIGGIOGERA M. Histochemistry of Single Molecules: Methods and Protocols. New York: Humana, 2017: 179-188. |
82 | HUSSAINI H M, SEO B, RICH A M. Immunohistochemistry and Immunofluorescence[M]//SEYMOUR G J, CULLINAN M P, HENG N C K, et al. Oral Biology: Molecular Techniques and Applications. 3rd ed. New York: Humana, 2023: 439-450. |
83 | MAGAKI S, HOJAT S A, WEI B W, et al. An introduction to the performance of immunohistochemistry [M]//YONG W H. Biobanking: Methods and Protocols. New York: Humana, 2019: 289-298. |
84 |
CEFIS M , CHANEY R , QUIRIÉ A , et al. Endothelial cells are an important source of BDNF in rat skeletal muscle[J]. Sci Rep, 2022, 12 (1): 311.
doi: 10.1038/s41598-021-03740-8 |
85 |
KALBE C , METZGER K , GARIÉPY C , et al. Effect of muscle fibre types and carnosine levels on the expression of carnosine-related genes in pig skeletal muscle[J]. Histochem Cell Biol, 2023, 160 (1): 63- 77.
doi: 10.1007/s00418-023-02193-6 |
86 | KEINATH M, TIMOSHEVSKIY V. Fluorescence in situ hybridization of DNA probes on mitotic chromosomes of the Mexican axolotl[M]//SEIFERT A W, CURRIE J D. Salamanders. New York: Humana, 2023: 165-173. |
87 | YUE L, CHEUNG T H. Visualization of RNA transcripts in muscle stem cells using single-molecule fluorescence in situ hybridization[M]//ASAKURA A. Skeletal Muscle Stem Cells: Methods and Protocols. New York: Humana, 2023: 445-452. |
88 | CANIZO J, VANDAL K, BIONDIC S, et al. Whole-mount RNA, single-molecule RNA (smRNA), and DNA fluorescence in situ hybridization (FISH) in mammalian embryos[M]//ZERNICKA-GOETZ M, TURKSEN K. Embryo Models In Vitro: Methods and Protocols. New York: Humana, 2024: 307-320. |
89 |
LAWRENCE J B , TANEJA K , SINGER R H . Temporal resolution and sequential expression of muscle-specific genes revealed by in situ hybridization[J]. Dev Biol, 1989, 133 (1): 235- 246.
doi: 10.1016/0012-1606(89)90314-Xap.2021.115465 |
90 |
KERNOHAN K D , BÉRUBÉ N G . Three-dimensional dual labelled DNA fluorescent in situ hybridization analysis in fixed tissue sections[J]. MethodsX, 2014, 1, 30- 35.
doi: 10.1016/j.mex.2014.04.001 |
91 | GELALI E, CUSTODIO J, GIRELLI G, et al. An application-directed, versatile DNA FISH platform for research and diagnostics[M]//VAVOURI T, PEINADO M A. CpG Islands: Methods and Protocols. New York: Humana, 2018: 303-333. |
92 |
JACKAMAN C , NOWAK K J , RAVENSCROFT G , et al. Novel application of flow cytometry: determination of muscle fiber types and protein levels in whole murine skeletal muscles and heart[J]. Cell Motil Cytoskeleton, 2007, 64 (12): 914- 925.
doi: 10.1002/cm.20239 |
93 | KOSMAC K , PECK B D , WALTON R G , et al. Immunohistochemical identification of human skeletal muscle macrophages[J]. Bio Protoc, 2018, 8 (12): e2883. |
94 |
GATTAZZO F , LAURENT B , RELAIX F , et al. Distinct phases of postnatal skeletal muscle growth govern the progressive establishment of muscle stem cell quiescence[J]. Stem Cell Reports, 2020, 15 (3): 597- 611.
doi: 10.1016/j.stemcr.2020.07.011 |
95 | ACˇG AMERNIK K, ZUPAN J. Surface antigen-based identification of in vitro expanded skeletal muscle-derived mesenchymal stromal/stem cells using flow cytometry[M]//TURKSEN K. Stem Cells and Aging: Methods and Protocols. 2nd ed. New York: Humana, 2019: 225-233. |
96 |
KRASNIEWSKI L K , CHAKRABORTY P , CUI C Y , et al. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations[J]. eLife, 2022, 11, e77974.
doi: 10.7554/eLife.77974 |
97 |
MONTARRAS D , MORGAN J , COLLINS C , et al. Direct isolation of satellite cells for skeletal muscle regeneration[J]. Science, 2005, 309 (5743): 2064- 2067.
doi: 10.1126/science.1114758 |
98 |
LUK H Y , MCFARLIN B K , VINGREN J L . Using image-based flow cytometry to monitor satellite cells proliferation and differentiation in vitro[J]. Methods, 2017, 112, 175- 181.
doi: 10.1016/j.ymeth.2016.08.005 |
99 | PERCOPO C M, LIMKAR A R, SEK A C, et al. Detection of mouse eosinophils in tissue by flow cytometry and isolation by fluorescence-activated cell sorting (FACS)[M]//WALSH G M. Eosinophils: Methods and Protocols. 2nd ed. New York: Humana, 2021: 49-58. |
100 |
COULIS G , JAIME D , GUERRERO-JUAREZ C , et al. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis[J]. Sci Adv, 2023, 9 (27): eadd9984.
doi: 10.1126/sciadv.add9984 |
101 |
GIORDANI L , HE G J , NEGRONI E , et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J]. Mol Cell, 2019, 74 (3): 609- 621.e6.
doi: 10.1016/j.molcel.2019.02.026 |
102 |
CAI C C , WAN P , WANG H , et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J]. Cell Prolif, 2023, 56 (9): e13430.
doi: 10.1111/cpr.13430 |
103 |
LI J H , XING S Y , ZHAO G P , et al. Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing[J]. BMC Genomics, 2020, 21 (1): 752.
doi: 10.1186/s12864-020-07136-2 |
104 |
DE MICHELI A J , SPECTOR J A , ELEMENTO O , et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations[J]. Skelet Muscle, 2020, 10 (1): 19.
doi: 10.1186/s13395-020-00236-3 |
105 |
DE MICHELI A J , LAURILLIARD E J , HEINKE C L , et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration[J]. Cell Rep, 2020, 30 (10): 3583- 3595.e5.
doi: 10.1016/j.celrep.2020.02.067 |
[1] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[2] | 刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55(4): 1592-1604. |
[3] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[4] | 曹官从, 马露, 任灵芝, 李杨, 史新娥, 杨公社, 李晓. 基于单细胞测序技术探讨动物骨骼肌卫星细胞与生态位细胞之间的“对话”[J]. 畜牧兽医学报, 2024, 55(12): 5340-5348. |
[5] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[6] | 员佳乐, 刘畅, 黄晓宇, 刘巧霞, 史明月, 李文霞, 牛瑾, 王首元, 高鹏飞, 郭晓红, 李步高, 路畅, 曹果清. miR-145-5p靶向IGF1R介导AKT通路抑制猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2023, 54(5): 1893-1904. |
[7] | 杨光, 徐景, 李新, 胡德宝, 郭益文, 丁向彬, 郭宏, 张林林. 干扰lncbMD对牛骨骼肌卫星细胞增殖分化的影响[J]. 畜牧兽医学报, 2023, 54(3): 1015-1025. |
[8] | 贾紫洁, 图格琴, 丁文淇, 任秀娟, 刘慧莹, 李欣泽, 翠芳, 芒来, 白东义. 蒙古马全身主要骨骼肌表型谱的构建及比较研究[J]. 畜牧兽医学报, 2023, 54(2): 596-607. |
[9] | 王燕星, 张雨时, 姬海港, 刘阳, 牛玉芳, 韩瑞丽, 刘小军, 田亚东, 康相涛, 李转见. 鸡骨骼肌卫星细胞系的建立及分析[J]. 畜牧兽医学报, 2023, 54(12): 4972-4981. |
[10] | 薛霖莉, 孙睿, 郝晓静, 曹校瑞, 王海东, 卢嘉茵. 基于小鼠骨骼肌损伤模型分析丹参素对骨骼肌损伤后修复再生的促进作用[J]. 畜牧兽医学报, 2023, 54(12): 5252-5263. |
[11] | 张力, 许加龙, 黄锦钰, 许子月, 雷昕诺, 卢会鹏, 朱睿, 孙伟翔, 曹海月, 王安平, 朱善元. 鹅骨骼肌卫星细胞的分离培养与鉴定[J]. 畜牧兽医学报, 2023, 54(10): 4186-4195. |
[12] | 李文雅, 牛欣然, 任团辉, 蔡含芳, 韩瑞丽, 田亚东, 刘小军, 康相涛, 李转见. 鸡骨骼肌中天然反义lncRNA VGLL2-AS的鉴定及其与VGLL2的关系研究[J]. 畜牧兽医学报, 2023, 54(1): 122-132. |
[13] | 周敏, 汪凯歌, 张濂, 马曦. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2845-2857. |
[14] | 张冬杰, 汪亮, 马红, 李忠秋, 王文涛, 刘娣. 低温胁迫下民猪骨骼肌的转录调控分析[J]. 畜牧兽医学报, 2022, 53(8): 2524-2536. |
[15] | 杨光, 杨旭, 訾晶晶, 于建杰, 郭宏, 丁向彬, 刘新峰, 张林林. 干扰HNRNPAB对牛骨骼肌卫星细胞增殖与分化的作用研究[J]. 畜牧兽医学报, 2022, 53(10): 3412-3420. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||