畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5340-5348.doi: 10.11843/j.issn.0366-6964.2024.12.002
曹官从1(), 马露1, 任灵芝2, 李杨1, 史新娥1, 杨公社1, 李晓1,*(
)
收稿日期:
2024-05-27
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
李晓
E-mail:caoguancong@nwafu.edu.cn;nicelixiao@nwsuaf.edu.cn
作者简介:
曹官从(2003-), 男, 满族, 山东德州人, 本科生, 主要从事猪肌肉生物学研究, E-mail: caoguancong@nwafu.edu.cn
基金资助:
CAO Guancong1(), MA Lu1, REN Lingzhi2, LI Yang1, SHI Xin'e1, YANG Gongshe1, LI Xiao1,*(
)
Received:
2024-05-27
Online:
2024-12-23
Published:
2024-12-27
Contact:
LI Xiao
E-mail:caoguancong@nwafu.edu.cn;nicelixiao@nwsuaf.edu.cn
摘要:
单细胞测序技术是在单个细胞水平上对基因组、转录组、表观组进行高通量测序分析的一项前沿技术。它能够揭示细胞群体差异和细胞发育谱系关系,反映细胞群体的异质性及细胞间的相互作用,在肿瘤发生、干细胞生物学等多个领域发挥重要作用。动物骨骼肌组织是以肌纤维为主,包含肌卫星细胞、成纤维-成脂祖细胞和巨噬细胞等多种细胞在内的非均质组织。受益于单细胞测序技术的迅速发展,人们对骨骼肌中细胞群体组成、不同群体之间互作的了解逐渐加深。本文围绕骨骼肌中细胞群体组成及细胞间互作,聚焦肌卫星细胞与生态位细胞的“交叉对话”在调控骨骼肌生长、代谢及再生等过程中的作用,对已有的研究成果进行简单的综述,以期为调控产肉动物生长及改善肉质提供新思路。
中图分类号:
曹官从, 马露, 任灵芝, 李杨, 史新娥, 杨公社, 李晓. 基于单细胞测序技术探讨动物骨骼肌卫星细胞与生态位细胞之间的“对话”[J]. 畜牧兽医学报, 2024, 55(12): 5340-5348.
CAO Guancong, MA Lu, REN Lingzhi, LI Yang, SHI Xin'e, YANG Gongshe, LI Xiao. Explore the "Cross-talk" between Skeletal Muscle Satellite Cells and the Niche Cells Based on Single-cell Sequencing Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5340-5348.
表 1
单细胞全转录组测序方法比较"
测序技术 Method | 测序细胞数 Cell number | cDNA覆盖度 cDNA coverage | 扩增方式 Amplification method | 唯一分子标识符 UMI | 发表年份 Published year | 细胞分选技术 Isolation strategy | 参考文献 Reference |
Smart-seq | 1 000以下 | 全cDNA序列 | PCR | × | 2012 | FACS | [ |
Smart-seq2 | 1 000以下 | 全cDNA序列 | PCR | × | 2013 | FACS | [ |
Cel-seq | 1 000以下 | 3′端 | PCR | × | 2012 | FACS | [ |
cel-seq2 | 1 000以下 | 全cDNA序列 | IVT | √ | 2016 | FACS | [ |
Drop-seq | 高通量 | 3'端 | PCR | √ | 2015 | Microdroplets | [ |
inDrop-seq | 高通量 | 3'端 | IVT | √ | 2015 | Microdroplets | [ |
10×Genomics | 高通量 | 3'端 | PCR | √ | 2017 | Microdroplets | [ |
1 |
SCHMIDT M , SCHÜLER S C , HÜTTNER S S , et al. Adult stem cells at work: regenerating skeletal muscle[J]. Cell Mol Life Sci, 2019, 76 (13): 2559- 2570.
doi: 10.1007/s00018-019-03093-6 |
2 |
侯任达, 张润, 侯欣华, 等. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3279- 3286.
doi: 10.11843/j.issn.0366-6964.2022.10.001 |
HOU R D , ZHANG R , HOU X H , et al. Research progress on the pattern of muscle fiber development and related genes in livestock and poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3279- 3286.
doi: 10.11843/j.issn.0366-6964.2022.10.001 |
|
3 |
SOUSA-VICTOR P , GARCÍA-PRAT L , MUÑOZ-CÁNOVES P . Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23 (3): 204- 226.
doi: 10.1038/s41580-021-00421-2 |
4 |
ARPKE R W , SHAMS A S , COLLINS B C , et al. Preservation of satellite cell number and regenerative potential with age reveals locomotory muscle bias[J]. Skelet Muscle, 2021, 11 (1): 22.
doi: 10.1186/s13395-021-00277-2 |
5 |
ZHAO Y , CHEN M M , LIAN D , et al. Non-Coding RNA regulates the myogenesis of skeletal muscle satellite cells, injury repair and diseases[J]. Cells, 2019, 8 (9): 988.
doi: 10.3390/cells8090988 |
6 |
HICKS M R , PYLE A D . The emergence of the stem cell niche[J]. Trends Cell Biol, 2023, 33 (2): 112- 123.
doi: 10.1016/j.tcb.2022.07.003 |
7 |
HONG X T , CAMPANARIO S , RAMÍREZ-PARDO I , et al. Stem cell aging in the skeletal muscle: the importance of communication[J]. Ageing Res Rev, 2022, 73, 101528.
doi: 10.1016/j.arr.2021.101528 |
8 |
ZHANG L , LEE M , MASLOV A Y , et al. Analyzing somatic mutations by single-cell whole-genome sequencing[J]. Nat Protoc, 2024, 19 (2): 487- 516.
doi: 10.1038/s41596-023-00914-8 |
9 |
JOVIC D , LIANG X , ZENG H , et al. Single-cell RNA sequencing technologies and applications: a brief overview[J]. Clin Transl Med, 2022, 12 (3): e694.
doi: 10.1002/ctm2.694 |
10 |
WEN L , TANG F C . Recent advances in single-cell sequencing technologies[J]. Precis Clin Med, 2022, 5 (1): pbac002.
doi: 10.1093/pcmedi/pbac002 |
11 |
DANILENKO M , ZAKA M , KEELING C , et al. Single-cell DNA sequencing identifies risk-associated clonal complexity and evolutionary trajectories in childhood medulloblastoma development[J]. Acta Neuropathol, 2022, 144 (3): 565- 578.
doi: 10.1007/s00401-022-02464-x |
12 | UDUPA P , GHOSH D K . Implementation of exome sequencing to identify rare genetic diseases[J]. Methods Mol Biol, 2024, 2719, 79- 98. |
13 |
AHN J , HEO S , LEE J , et al. Introduction to single-cell DNA methylation profiling methods[J]. Biomolecules, 2021, 11 (7): 1013.
doi: 10.3390/biom11071013 |
14 |
WANG X L , HE Y , ZHANG Q M , et al. Direct comparative analyses of 10×genomics chromium and smart-seq2[J]. Genomics Proteomics Bioinf, 2021, 19 (2): 253- 266.
doi: 10.1016/j.gpb.2020.02.005 |
15 |
张肖旭, 李昊, 冯平捷, 等. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55 (8): 3276- 3287.
doi: 10.11843/j.issn.0366-6964.2024.08.002 |
ZHANG X X , LI H , FENG P J , et al. Application of single-cell transcriptome sequencing technology in domesticated animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3276- 3287.
doi: 10.11843/j.issn.0366-6964.2024.08.002 |
|
16 |
MA L , MENG Y Y , AN Y L , et al. Single-cell RNA-seq reveals novel interaction between muscle satellite cells and fibro-adipogenic progenitors mediated with FGF7 signalling[J]. J Cachexia Sarcopenia Muscle, 2024, 15 (4): 1388- 1403.
doi: 10.1002/jcsm.13484 |
17 |
XU D D , WAN B Y , QIU K , et al. Single-cell RNA-sequencing provides insight into skeletal muscle evolution during the selection of muscle characteristics[J]. Adv Sci (Weinh), 2023, 10 (35): 2305080.
doi: 10.1002/advs.202305080 |
18 |
XIAO W , JIANG N J , JI Z Y , et al. Single-cell RNA sequencing reveals the cellular landscape of longissimus dorsi in a newborn suhuai pig[J]. Int J Mol Sci, 2024, 25 (2): 1204.
doi: 10.3390/ijms25021204 |
19 |
CAI S F , HU B , WANG X Y , et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig[J]. BMC Biol, 2023, 21 (1): 19.
doi: 10.1186/s12915-023-01519-z |
20 |
RAMSKÖLD D , LUO S J , WANG Y C , et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells[J]. Nat Biotechnol, 2012, 30 (8): 777- 782.
doi: 10.1038/nbt.2282 |
21 |
PICELLI S , BJÖRKLUND Å K , FARIDANI O R , et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells[J]. Nat Methods, 2013, 10, 1096- 1098.
doi: 10.1038/nmeth.2639 |
22 |
HASHIMSHONY T , WAGNER F , SHER N , et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification[J]. Cell Rep, 2012, 2 (3): 666- 673.
doi: 10.1016/j.celrep.2012.08.003 |
23 |
HASHIMSHONY T , SENDEROVICH N , AVITAl G , et al. CEL-Seq2:sensitive highly-multiplexed single-cell RNA-Seq[J]. Genome Biol, 2016, 17, 77.
doi: 10.1186/s13059-016-0938-8 |
24 |
MACOSKO E Z , BASU A , SATIJA R , et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161 (5): 1202- 1214.
doi: 10.1016/j.cell.2015.05.002 |
25 |
KLEIN A M , MAZUTIS L , AKARTUNA I , et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161 (5): 1187- 1201.
doi: 10.1016/j.cell.2015.04.044 |
26 |
ZHENG G X Y , TERRY J M , BELGRADER P , et al. Massively parallel digital transcriptional profiling of single cells[J]. Nat Commun, 2017, 8, 14049.
doi: 10.1038/ncomms14049 |
27 |
BUENROSTRO J D , WU B J , LITZENBURGER U M , et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523 (7561): 486- 490.
doi: 10.1038/nature14590 |
28 |
KLEMM S L , SHIPONY Z , GREENLEAF W J . Chromatin accessibility and the regulatory epigenome[J]. Nat Rev Genet, 2019, 20 (4): 207- 220.
doi: 10.1038/s41576-018-0089-8 |
29 | BEREST I , TANGHERLONI A . Integration of scATAC-Seq with scRNA-Seq data[J]. Methods Mol Biol, 2023, 2584, 293- 310. |
30 |
CAI C C , WAN P , WANG H , et al. Transcriptional and open chromatin analysis of bovine skeletal muscle development by single-cell sequencing[J]. Cell Prolif, 2023, 56 (9): e13430.
doi: 10.1111/cpr.13430 |
31 |
SLYPER M , PORTER C B M , ASHENBERG O , et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors[J]. Nat Med, 2020, 26 (5): 792- 802.
doi: 10.1038/s41591-020-0844-1 |
32 |
SYLOW L , TOKARZ V L , RICHTER E A , et al. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia[J]. Cell Metab, 2021, 33 (4): 758- 780.
doi: 10.1016/j.cmet.2021.03.020 |
33 |
KASHIMA Y , SAKAMOTO Y , KANEKO K , et al. Single-cell sequencing techniques from individual to multiomics analyses[J]. Exp Mol Med, 2020, 52 (9): 1419- 1427.
doi: 10.1038/s12276-020-00499-2 |
34 |
JIANG S , WILLIAMS K , KONG X D , et al. Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei[J]. PLoS Genet, 2020, 16 (5): e1008754.
doi: 10.1371/journal.pgen.1008754 |
35 |
LIN H C , PENG H , SUN Y X , et al. Reprogramming of cis-regulatory networks during skeletal muscle atrophy in male mice[J]. Nat Commun, 2023, 14 (1): 6581.
doi: 10.1038/s41467-023-42313-3 |
36 |
GIORDANI L , HE G J , NEGRONI E , et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations[J]. Mol Cell, 2019, 74 (3): 609- 621. e6.
doi: 10.1016/j.molcel.2019.02.026 |
37 |
DELL'ORSO S , JUAN A H , KO K D , et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions[J]. Development, 2019, 146 (12): dev174177.
doi: 10.1242/dev.174177 |
38 |
XI H B , LANGERMAN J , SABRI S , et al. A human skeletal muscle atlas identifies the trajectories of stem and progenitor cells across development and from human pluripotent stem cells[J]. Cell Stem Cell, 2020, 27 (1): 158- 176. e10.
doi: 10.1016/j.stem.2020.04.017 |
39 |
YIN H , PRICE F , RUDNICKI M A . Satellite cells and the muscle stem cell niche[J]. Physiol Rev, 2013, 93 (1): 23- 67.
doi: 10.1152/physrev.00043.2011 |
40 |
DE MICHELI A J , SPECTOR J A , ELEMENTO O , et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations[J]. Skelet Muscle, 2020, 10 (1): 19.
doi: 10.1186/s13395-020-00236-3 |
41 |
CHO D S , DOLES J D . Single cell transcriptome analysis of muscle satellite cells reveals widespread transcriptional heterogeneity[J]. Gene, 2017, 636, 54- 63.
doi: 10.1016/j.gene.2017.09.014 |
42 |
BARRUET E , GARCIA S M , STRIEDINGER K , et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing[J]. Elife, 2020, 9, e51576.
doi: 10.7554/eLife.51576 |
43 |
LYU P , QI Y M , TU Z J , et al. Single-cell RNA sequencing reveals heterogeneity of cultured bovine satellite cells[J]. Front Genet, 2021, 12, 742077.
doi: 10.3389/fgene.2021.742077 |
44 | 姜正飞. 抗阻训练调控SPARC对高脂膳食小鼠骨骼肌质量的影响[D]. 上海: 华东师范大学, 2023. |
JIANG Z F. The effect of resistance training regulating SPARC on skeletal muscle mass in high-fat diet mice[D]. Shanghai: East China Normal University, 2023. (in Chinese) | |
45 |
WANG L Y , ZHOU Y B , WANG Y Z , et al. Integrative cross-species analysis reveals conserved and unique signatures in fatty skeletal muscles[J]. Sci Data, 2024, 11 (1): 290.
doi: 10.1038/s41597-024-03114-5 |
46 | YU Y Y , SU Y , WANG G X , et al. Reciprocal communication between FAPs and muscle cells via distinct extracellular vesicle miRNAs in muscle regeneration[J]. Proc Natl Acad Sci U S A, 2024, 121 (11): e1978423175. |
47 |
SAMPATH S C , SAMPATH S C , HO A T V , et al. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M[J]. Nat Commun, 2018, 9 (1): 1531.
doi: 10.1038/s41467-018-03876-8 |
48 |
MURACH K A , PECK B D , POLICASTRO R A , et al. Early satellite cell communication creates a permissive environment for long-term muscle growth[J]. iScience, 2021, 24 (4): 102372.
doi: 10.1016/j.isci.2021.102372 |
49 |
HETTINGER Z R , KARGL C K , SHANNAHAN J H , et al. Extracellular vesicles released from stress-induced prematurely senescent myoblasts impair endothelial function and proliferation[J]. Exp Physiol, 2021, 106 (10): 2083- 2095.
doi: 10.1113/EP089423 |
50 |
VERMA M , ASAKURA Y , MURAKONDA B S R , et al. Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and Notch signaling[J]. Cell Stem Cell, 2018, 23 (4): 530- 543. e9.
doi: 10.1016/j.stem.2018.09.007 |
51 |
SHEEHAN S M , TATSUMI R , TEMM-GROVE C J , et al. HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro[J]. Muscle Nerve, 2000, 23 (2): 239- 245.
doi: 10.1002/(SICI)1097-4598(200002)23:2<239::AID-MUS15>3.0.CO;2-U |
52 |
CHOI W , LEE J , LEE J , et al. Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration[J]. Front Physiol, 2019, 10, 914.
doi: 10.3389/fphys.2019.00914 |
53 |
YARTSEVA V , GOLDSTEIN L D , RODMAN J , et al. Heterogeneity of satellite cells implicates DELTA1/NOTCH2 signaling in self-renewal[J]. Cell Rep, 2020, 30 (5): 1491- 1503. e6.
doi: 10.1016/j.celrep.2019.12.100 |
54 |
MURPHY C , WITHROW J , HUNTER M , et al. Emerging role of extracellular vesicles in musculoskeletal diseases[J]. Mol Aspects Med, 2018, 60, 123- 128.
doi: 10.1016/j.mam.2017.09.006 |
55 |
SHAO X Y , GONG W , WANG Q J , et al. Atrophic skeletal muscle fibre-derived small extracellular vesicle miR-690 inhibits satellite cell differentiation during ageing[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (6): 3163- 3180.
doi: 10.1002/jcsm.13106 |
56 |
CONBOY I M , CONBOY M J , SMYTHE G M , et al. Notch-mediated restoration of regenerative potential to aged muscle[J]. Science, 2003, 302 (5650): 1575- 1577.
doi: 10.1126/science.1087573 |
57 |
ELIAZER S , MUNCIE J M , CHRISTENSEN J , et al. Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells[J]. Cell Stem Cell, 2019, 25 (5): 654- 665. e4.
doi: 10.1016/j.stem.2019.08.007 |
58 | 谢芳, 罗君谊, 陈婷, 等. 非编码RNA调控猪肌间脂肪沉积的研究进展[J]. 中国畜牧兽医, 2023, 50 (10): 4133- 4140. |
XIE F , LUO J Y , CHEN T , et al. Research progress on non-coding RNA regulating intermuscular fat deposition in pig[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (10): 4133- 4140. | |
59 |
STANLEY A , TICHY E D , KOCAN J , et al. Dynamics of skeletal muscle-resident stem cells during myogenesis in fibrodysplasia ossificans progressiva[J]. NPJ Regen Med, 2022, 7 (1): 5.
doi: 10.1038/s41536-021-00201-8 |
60 |
LUKJANENKO L , KARAZ S , STUELSATZ P , et al. Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors[J]. Cell Stem Cell, 2019, 24 (3): 433- 446. e7.
doi: 10.1016/j.stem.2018.12.014 |
61 |
SCHÜLER S C , KIRKPATRICK J M , SCHMIDT M , et al. Extensive remodeling of the extracellular matrix during aging contributes to age-dependent impairments of muscle stem cell functionality[J]. Cell Rep, 2021, 35 (10): 109223.
doi: 10.1016/j.celrep.2021.109223 |
62 |
WOSCZYNA M N , KONISHI C T , PEREZ CARBAJAL E E , et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle[J]. Cell Rep, 2019, 27 (7): 2029- 2035. e5.
doi: 10.1016/j.celrep.2019.04.074 |
63 |
WANG L S , GAO P D , LI C Y , et al. A single-cell atlas of bovine skeletal muscle reveals mechanisms regulating intramuscular adipogenesis and fibrogenesis[J]. J Cachexia Sarcopenia Muscle, 2023, 14 (5): 2152- 2167.
doi: 10.1002/jcsm.13292 |
64 |
ROBERTSON T A , MALEY M A L , GROUNDS M D , et al. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis[J]. Exp Cell Res, 1993, 207 (2): 321- 331.
doi: 10.1006/excr.1993.1199 |
65 |
ZHANG C C , CHENG N X , QIAO B K , et al. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration[J]. J Cachexia Sarcopenia Muscle, 2020, 11 (5): 1291- 1305.
doi: 10.1002/jcsm.12584 |
66 |
ARNOLD L , HENRY A , PORON F , et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis[J]. J Exp Med, 2007, 204 (5): 1057- 1069.
doi: 10.1084/jem.20070075 |
67 |
RATNAYAKE D , NGUYEN P D , ROSSELLO F J , et al. Macrophages provide a transient muscle stem cell niche via NAMPT secretion[J]. Nature, 2021, 591 (7849): 281- 287.
doi: 10.1038/s41586-021-03199-7 |
68 |
SHANG M , CAPPELLESSO F , AMORIM R , et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J]. Nature, 2020, 587 (7835): 626- 631.
doi: 10.1038/s41586-020-2857-9 |
69 | DORT J , FABRE P , MOLINA T , et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases[J]. Stem Cells Int, 2019, 2019, 4761427. |
[1] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[2] | 刘媛, 李溪月, 张维娅. MMP14调控骨骼肌卫星细胞分化的分子机制研究[J]. 畜牧兽医学报, 2024, 55(4): 1592-1604. |
[3] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[4] | 吴丹妮, 谢遇春, 秦箐, 张崇妍, 徐晓龙, 赵丹, 兰茗熙, 杨继, 徐松松, 刘志红. 畜禽肌纤维发育相关细胞种类及鉴定方法的研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5325-5339. |
[5] | 周蜓蜓, 李立, 吴燕涛, 逯文颖, 付宝权, 殷宏, 贾万忠, 闫鸿斌. 单细胞转录组学技术及其在寄生虫研究中的应用进展[J]. 畜牧兽医学报, 2024, 55(10): 4290-4301. |
[6] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[7] | 员佳乐, 刘畅, 黄晓宇, 刘巧霞, 史明月, 李文霞, 牛瑾, 王首元, 高鹏飞, 郭晓红, 李步高, 路畅, 曹果清. miR-145-5p靶向IGF1R介导AKT通路抑制猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2023, 54(5): 1893-1904. |
[8] | 杨光, 徐景, 李新, 胡德宝, 郭益文, 丁向彬, 郭宏, 张林林. 干扰lncbMD对牛骨骼肌卫星细胞增殖分化的影响[J]. 畜牧兽医学报, 2023, 54(3): 1015-1025. |
[9] | 贾紫洁, 图格琴, 丁文淇, 任秀娟, 刘慧莹, 李欣泽, 翠芳, 芒来, 白东义. 蒙古马全身主要骨骼肌表型谱的构建及比较研究[J]. 畜牧兽医学报, 2023, 54(2): 596-607. |
[10] | 王燕星, 张雨时, 姬海港, 刘阳, 牛玉芳, 韩瑞丽, 刘小军, 田亚东, 康相涛, 李转见. 鸡骨骼肌卫星细胞系的建立及分析[J]. 畜牧兽医学报, 2023, 54(12): 4972-4981. |
[11] | 薛霖莉, 孙睿, 郝晓静, 曹校瑞, 王海东, 卢嘉茵. 基于小鼠骨骼肌损伤模型分析丹参素对骨骼肌损伤后修复再生的促进作用[J]. 畜牧兽医学报, 2023, 54(12): 5252-5263. |
[12] | 张力, 许加龙, 黄锦钰, 许子月, 雷昕诺, 卢会鹏, 朱睿, 孙伟翔, 曹海月, 王安平, 朱善元. 鹅骨骼肌卫星细胞的分离培养与鉴定[J]. 畜牧兽医学报, 2023, 54(10): 4186-4195. |
[13] | 李文雅, 牛欣然, 任团辉, 蔡含芳, 韩瑞丽, 田亚东, 刘小军, 康相涛, 李转见. 鸡骨骼肌中天然反义lncRNA VGLL2-AS的鉴定及其与VGLL2的关系研究[J]. 畜牧兽医学报, 2023, 54(1): 122-132. |
[14] | 周敏, 汪凯歌, 张濂, 马曦. 微生物-肠-肌轴调节骨骼肌代谢和功能的研究进展[J]. 畜牧兽医学报, 2022, 53(9): 2845-2857. |
[15] | 张冬杰, 汪亮, 马红, 李忠秋, 王文涛, 刘娣. 低温胁迫下民猪骨骼肌的转录调控分析[J]. 畜牧兽医学报, 2022, 53(8): 2524-2536. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||