畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 4950-4967.doi: 10.11843/j.issn.0366-6964.2024.11.015
蒋婷1(), 李文东1, 李兴起1, 黄雨1, 王启贵2, 王海威2, 杨朝武3, 刘凌斌1,*(
)
收稿日期:
2024-05-13
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
刘凌斌
E-mail:jiangt019@163.com;liulb515@163.com
作者简介:
蒋婷(1995-), 女, 甘肃通渭人, 硕士生, 主要从事家禽遗传育种研究, E-mail: jiangt019@163.com
基金资助:
Ting JIANG1(), Wendong LI1, Xingqi LI1, Yu HUANG1, Qigui WANG2, Haiwei WANG2, Chaowu YANG3, Lingbin LIU1,*(
)
Received:
2024-05-13
Online:
2024-11-23
Published:
2024-11-30
Contact:
Lingbin LIU
E-mail:jiangt019@163.com;liulb515@163.com
摘要:
为了研究蛋鸡就巢性的潜在调控机制,本研究选用300日龄体况良好、体重一致的城口山地鸡12只,其中3只个体处于正常产蛋期,其余9只个体分别处于就巢期10、20和30天。采集各组蛋鸡卵巢组织进行组织解剖学形态观察,然后利用转录组(RNA-seq)和蛋白组(iTRAQ)测序技术分别对产蛋组正常卵巢(normal ovary,NO)和就巢组萎缩卵巢(atrophic ovary,AO)进行测序分析。筛选差异表达基因(DEGs)和差异表达蛋白(DEPs)并进行功能富集分析,鉴定与家禽就巢性相关的候选基因。结果表明:就巢导致蛋鸡卵巢发生萎缩,卵泡大量闭锁。在卵巢组织中鉴定出930个DEGs,其中430个基因上调,500个基因下调;同时鉴定出546个DEPs,其中178个蛋白上调,368个蛋白下调。通过功能注释和富集分析发现,这些DEGs和DEPs显著富集在细胞外基质(extracellular matrix,ECM)受体相互作用、黏着和PI3K-Akt等信号通路。最后通过转录组和蛋白组联合分析,筛选出7个蛋鸡就巢性的候选基因:COMP、FN1、ITGA8、THBS1、COL4A2、COL4A1和COL1A1。综上所述,本研究通过分析转录组测序和蛋白组测序结果筛选了蛋鸡就巢性关键候选基因,并构建了家禽就巢状态下卵巢发育的调控网络。本研究为深入解析就巢期卵巢萎缩的分子调控机制提供了理论参考,丰富了调控家禽就巢性状的候选基因,为蛋鸡的遗传改良和分子育种研究提供理论依据。
中图分类号:
蒋婷, 李文东, 李兴起, 黄雨, 王启贵, 王海威, 杨朝武, 刘凌斌. 转录组和蛋白组筛选就巢鸡卵巢发育候选基因及其调控网络构建[J]. 畜牧兽医学报, 2024, 55(11): 4950-4967.
Ting JIANG, Wendong LI, Xingqi LI, Yu HUANG, Qigui WANG, Haiwei WANG, Chaowu YANG, Lingbin LIU. Screening Candidate Genes for Ovarian Development and Constructing Regulatory Network in Nesting Chickens by Transcriptome and Proteome[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4950-4967.
表 1
qRT-PCR引物序列"
基因Gene | 上游引物(5′→3′) Forward primer | 下游引物(3′→5′) Reverse primer | 产物长度/bp Product length |
FN1 | CACCTACCCCCAGTTCACAC | TGGATGTTGTGTGTCTGCCT | 109 |
COL1A1 | GCCAAGACGAAGACATCCCA | GGCAGTTCTTGGTCTCGTCA | 156 |
SGK2 | GCCAAACGCAAGAGTGATGG | TCTCCGAGGTCTGGAAGGAG | 169 |
CASTOR1 | CTGTGTCCTCACACTGGACC | AACGTGATGGAGCTGGGTTC | 129 |
ACAT1 | GGTTCTGATGACCACGGAGG | GAATCTTGGGAACAGCGTGC | 131 |
MMP10 | CTCTATGGACCCCCAAGGGA | TGGGTGCCATTTCTGTTGGT | 121 |
β-actin | CTGTGCCCATCTATGAAGGCTA | ATTTCTCTCTCGGCTGTGGTG | 132 |
表 2
前20个在就巢期萎缩卵巢组织中表达上调的DEGs"
基因Gene | 描述Description | log2(FC) | P-value |
TTLL11 | Tubulin polyglutamylase TTLL11 isoform X4 | 10.500 841 88 | 1.458 15×10-5 |
VPREB3 | Pre-b lymphocyte 3 | 6.516 213 893 | 0.000 819 366 |
AICDA | Activation induced cytidine deaminase | 5.560 132 636 | 0.001 782 563 |
Aldh3b1 | Aldehyde dehydrogenase family 3 member b1 | 5.347 768 100 | 0.000 477 674 |
CXCL13 | C-x-c motif chemokine ligand 13 | 4.643 001 006 | 0.010 083 317 |
CHIR-B2 | Gallus gallus immunoglobulin-like receptor chir-b2 | 4.070 460 591 | 0.000 434 750 |
MR1 | F10 alpha chain-like isoform x1 | 3.665 580 961 | 0.016 924 252 |
PAX5 | Paired box 5 | 3.554 588 852 | 0.034 263 113 |
CXCR5 | C-x-c motif chemokine receptor 5 | 3.372 478 676 | 0.000 260 851 |
SLC6A18 | Solute carrier family 6 member 18 | 3.145 381 031 | 0.000 118 215 |
CD79B | Cd79b molecule | 3.030 284 866 | 5.085 67×10-5 |
RGS13 | Regulator of g-protein signaling 13 | 3.000 836 587 | 0.014 083 046 |
BPTF | Bromodomain phd finger transcription factor, partial | 2.964 106 33 | 0.000 817 016 |
pol | Uncharacterized protein loc106895380 | 2.701 115 657 | 0.040 790 927 |
sebox | Paired box protein 6 homolog | 2.626 303 296 | 0.000 660 700 |
RGS20 | Regulator of g-protein signaling 20 | 2.588 546 838 | 0.000 265 790 |
Tnr | Fibrinogen-like protein 1-like protein | 2.567 345 957 | 4.961 03×10-5 |
SLC22A18 | Solute carrier family 22 member 18 | 2.460 845 463 | 0.000 527 036 |
GSX2 | Gs homeobox 2-like | 2.448 250 869 | 0.012 140 053 |
POU2AF1 | Pou class 2 associating factor 1 | 2.421 874 929 | 0.002 290 982 |
表 3
前20个在就巢期萎缩卵巢组织中表达下调的DEGs"
基因Gene | 描述Description | log2(FC) | P-value |
CYP2AB1 | Cytochrome P450, family 2, subfamily AB, polypeptide 1 | -5.805 985 902 | 1.147 4×10-151 |
ACTC1 | Actin alpha cardiac muscle 1 | -4.874 610 515 | 1.073 13×10-7 |
ALB | Albumin | -4.060 938 705 | 4.069 68×10-6 |
UMOD | Uromodulin | -4.015 674 232 | 6.976 03×10-8 |
ZP3 | Zona pellucida sperm-binding protein 3 | -3.809 355 324 | 5.409 94×10-10 |
COL8A1 | Collagen type Ⅷ alpha 1 chain | -3.743 850 285 | 3.122 75×10-9 |
ACTA1 | Actin alpha 1, skeletal muscle | -3.444 999 220 | 6.556 52×10-10 |
MMP13 | Matrix metallopeptidase 13 | -3.430 684 692 | 7.028 18×10-5 |
TAGLN | Transgelin | -3.213 487 543 | 2.005 09×10-11 |
MYL4 | Myosin, light chain 4, alkali; atrial, embryonic | -3.204 401 269 | 2.002 51×10-13 |
FAM189A2 | Family with sequence similarity 189 member A2 | -3.123 454 143 | 5.063 02×10-7 |
INHA | Inhibin alpha subunit | -3.115 492 881 | 7.802 8×10-5 |
MMP10 | Matrix metallopeptidase 10 | -3.045 843 231 | 1.819 7×10-27 |
ACTG2 | Actin, gamma 2, smooth muscle, enteric | -2.980 748 271 | 1.992 53×10-9 |
CNN1 | Calponin 1 | -2.957 732 234 | 3.116 93×10-23 |
SFRP4 | Secreted frizzled related protein 4 | -2.826 452 510 | 1.254 79×10-19 |
COL4A1 | Collagen type Ⅳ alpha 1 chain | -2.821 702 234 | 1.732 3×10-25 |
VCAN | Versican | -2.761 868 293 | 4.999 09×10-36 |
COL4A2 | Collagen type Ⅳ alpha 2 chain | -2.702 337 677 | 1.318 83×10-21 |
ACTA2 | Actin, alpha 2, smooth muscle, aorta | -2.687 926 646 | 1.802 76×10-6 |
表 4
DEGs和DEPs的KEGG富集分析"
KEGG通路KEGG pathway | 差异表达基因、差异表达蛋白DEGs, DEPs | 基因数Gene number |
Focal adhesion | MYLK、COMP、FN1、ITGA8、THBS1、COL4A2、MYL9、COL4A1、TNC、COL1A1、ACTN1、FLNA | 12 |
ECM-receptor interaction | COMP、FN1、ITGA8、THBS1、SDC1、COL4A2、COL4A1、TNC、COL1A1 | 9 |
PI3K-Akt signaling pathway | COMP、SGK2、FN1、ITGA8、THBS1、COL4A2、EIF4E1B、COL4A1、TNC、COL1A1 | 10 |
1 |
李俊, 李建伟, 杨蓉, 等. 家禽就巢性影响因素的研究进展[J]. 中国畜禽种业, 2023, 19 (8): 91- 95.
doi: 10.3969/j.issn.1673-4556.2023.08.018 |
LI J , LI J W , YANG R , et al. Research progress on factors affecting broodiness in poultry[J]. The Chinese Livestock and Poultry Breeding, 2023, 19 (8): 91- 95.
doi: 10.3969/j.issn.1673-4556.2023.08.018 |
|
2 |
ROMANOV M N , TALBOT R T , WILSON P W , et al. Genetic control of incubation behavior in the domestic hen[J]. Poult Sci, 2002, 81 (7): 928- 931.
doi: 10.1093/ps/81.7.928 |
3 | 刘安怀, 徐茂森, 张旭, 等. 产蛋期和就巢期皖西白鹅卵巢组织结构、血清生化指标和激素水平比较研究[J]. 安徽科技学院学报, 2023, 37 (2): 1- 5. |
LIU A H , XU M S , ZHANG X , et al. Effects of brooding behavior on ovarian tissue structure, blood biochemical indexes and hormone levels of Wanxi white geese[J]. Journal of Anhui Science and Technology University, 2023, 37 (2): 1- 5. | |
4 | 王思博, 杨季, 马渭青, 等. 鹅就巢期卵巢特征及其内分泌机制的研究进展[J]. 中国畜牧杂志, 2020, 56 (3): 33- 37. |
WANG S B , YANG J , MA W Q , et al. Characteristics of ovary and its endocrine mechanism in geese during nesting[J]. Chinese Journal of Animal Science, 2020, 56 (3): 33- 37. | |
5 |
ZHAO J B , PAN H B , LIU Y , et al. Interacting networks of the hypothalamic-pituitary-ovarian axis regulate layer hens performance[J]. Genes (Basel), 2023, 14 (1): 141.
doi: 10.3390/genes14010141 |
6 |
YU J , LOU Y P , HE K , et al. Goose broodiness is involved in granulosa cell autophagy and homeostatic imbalance of follicular hormones[J]. Poult Sci, 2016, 95 (5): 1156- 1164.
doi: 10.3382/ps/pew006 |
7 |
LIU L B , XIAO Q H , GILBERT E R , et al. Whole-transcriptome analysis of atrophic ovaries in broody chickens reveals regulatory pathways associated with proliferation and apoptosis[J]. Sci Rep, 2018, 8 (1): 7231.
doi: 10.1038/s41598-018-25103-6 |
8 |
JOHNSON A L , BRIDGHAM J T , WITTY J P , et al. Expression of bcl-2 and nr-13 in hen ovarian follicles during development[J]. Biol Reprod, 1997, 57 (5): 1096- 1103.
doi: 10.1095/biolreprod57.5.1096 |
9 |
XU G Q , DONG Y Y Y , WANG Z , et al. Melatonin Attenuates Oxidative Stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J]. Int J Mol Sci, 2023, 24 (16): 12854.
doi: 10.3390/ijms241612854 |
10 |
GARRETT W M , GUTHRIE H D . Steroidogenic enzyme expression during preovulatory follicle maturation in pigs[J]. Biol Reprod, 1997, 56 (6): 1424- 1431.
doi: 10.1095/biolreprod56.6.1424 |
11 |
SHEN X , BAI X , LUO C L , et al. Quantitative proteomic analysis of chicken serum reveals key proteins affecting follicle development during reproductive phase transitions[J]. Poult Sci, 2021, 100 (1): 325- 333.
doi: 10.1016/j.psj.2020.09.058 |
12 |
JIANG R S , XU G Y , ZHANG X Q , et al. Association of polymorphisms for prolactin and prolactin receptor genes with broody traits in chickens[J]. Poult Sci, 2005, 84 (6): 839- 845.
doi: 10.1093/ps/84.6.839 |
13 |
PONSUKSILI S , TRAKOOLJUL N , HADLICH F , et al. Genetic regulation of liver metabolites and transcripts linking to biochemical-clinical parameters[J]. Front Genet, 2019, 10, 348.
doi: 10.3389/fgene.2019.00348 |
14 |
JIANG S S , ZHANG G H , MIAO J , et al. Transcriptome and metabolome analyses provide insight into the glucose-induced adipogenesis in porcine adipocytes[J]. Curr Issues Mol Biol, 2024, 46 (3): 2027- 2042.
doi: 10.3390/cimb46030131 |
15 | 王亚鑫, 王璟, 田学凯, 等. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55 (5): 1842- 1853. |
WANG Y X , WANG J , TIAN X K , et al. Application of multi-omics technology in the study of important economic traits of livestock and poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1842- 1853. | |
16 | HUANG X , ZHANG H Y , CAO H Y , et al. Transcriptomics and metabolomics analysis of the ovaries of high and low egg production chickens[J]. Animals (Basel), 2022, 12 (16): 2010. |
17 |
WANG L Y , ZHANG Y W , ZHANG B , et al. Candidate gene screening for lipid deposition using combined transcriptomic and proteomic data from Nanyang black pigs[J]. BMC Genomics, 2021, 22 (1): 441.
doi: 10.1186/s12864-021-07764-2 |
18 |
TAO Z , SONG W , ZHU C , et al. Comparative transcriptomic analysis of high and low egg-producing duck ovaries[J]. Poult Sci, 2017, 96 (12): 4378- 4388.
doi: 10.3382/ps/pex229 |
19 |
SHEN X , BAI X , XU J , et al. Transcriptome sequencing reveals genetic mechanisms underlying the transition between the laying and brooding phases and gene expression changes associated with divergent reproductive phenotypes in chickens[J]. Mol Biol Rep, 2016, 43 (9): 977- 989.
doi: 10.1007/s11033-016-4033-8 |
20 |
KOVÁCS J , FORGÓ V , PÉCZELY P . The fine structure of the follicular cells in growing and atretic ovarian follicles of the domestic goose[J]. Cell Tissue Res, 1992, 267 (3): 561- 569.
doi: 10.1007/BF00319379 |
21 |
YU J , LOU Y P , ZHAO A Y . Transcriptome analysis of follicles reveals the importance of autophagy and hormones in regulating broodiness of Zhedong white goose[J]. Sci Rep, 2016, 6 (1): 36877.
doi: 10.1038/srep36877 |
22 |
POWERS R K , GOODSPEED A , PIELKE-LOMBARDO H , et al. GSEA-InContext: identifying novel and common patterns in expression experiments[J]. Bioinformatics, 2018, 34 (13): i555- i564.
doi: 10.1093/bioinformatics/bty271 |
23 |
HE H R , LI D M , TIAN Y T , et al. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1[J]. J Anim Sci Biotechnol, 2022, 13 (1): 55.
doi: 10.1186/s40104-022-00697-0 |
24 |
TILLY J L , KOWALSKI K I , JOHNSON A L , et al. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression[J]. Endocrinology, 1991, 129 (5): 2799- 2801.
doi: 10.1210/endo-129-5-2799 |
25 |
CHOI J , JO M , LEE E , et al. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia[J]. Reproduction, 2014, 147 (1): 73- 80.
doi: 10.1530/REP-13-0386 |
26 |
KAIPIA A , HSUEH A J W . Regulation of ovarian follicle atresia[J]. Annu Rev Physiol, 1997, 59, 349- 363.
doi: 10.1146/annurev.physiol.59.1.349 |
27 | 茹盟, 曾文惠, 彭剑玲, 等. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54 (9): 3613- 3622. |
RU M , ZENG W H , PENG J L , et al. Research progress on follicles development of hens and its epigenetic regulatory mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3613- 3622. | |
28 | 郑言, 曹中赞, 马贲, 等. 氧化应激对家禽卵泡颗粒细胞凋亡和自噬的影响及机制研究进展[J]. 中国畜牧杂志, 2023, 59 (9): 110- 115. |
ZHENG Y , CAO Z Z , MA B , et al. Research progress on the effect of oxidative stress on apoptosis and autophagy of poultry follicular granulosa cells and its mechanism[J]. Chinese Journal of Animal Science, 2023, 59 (9): 110- 115. | |
29 |
ZHANG Y , ZHANG N J , ZOU Y M , et al. Deacetylation of Septin4 by SIRT2 (silent mating type information regulation 2 Homolog-2) mitigates damaging of hypertensive nephropathy[J]. Circ Res, 2023, 132 (5): 601- 624.
doi: 10.1161/CIRCRESAHA.122.321591 |
30 |
YUE J C , LÓPEZ J M . Understanding MAPK signaling pathways in apoptosis[J]. Int J Mol Sci, 2020, 21 (7): 2346.
doi: 10.3390/ijms21072346 |
31 |
ZHU G Y , MAO Y , ZHOU W D , et al. Dynamic changes in the follicular transcriptome and promoter DNA methylation pattern of steroidogenic genes in chicken follicles throughout the ovulation cycle[J]. PLoS One, 2015, 10 (12): e0146028.
doi: 10.1371/journal.pone.0146028 |
32 |
BAO T T , YAO J W , ZHOU S , et al. Naringin prevents follicular atresia by inhibiting oxidative stress in the aging chicken[J]. Poult Sci, 2022, 101 (7): 101891.
doi: 10.1016/j.psj.2022.101891 |
33 |
JIANG J G , CHEN C L , CARD J W , et al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors[J]. Cancer Res, 2005, 65 (11): 4707- 4715.
doi: 10.1158/0008-5472.CAN-04-4173 |
34 | GRESHAM R C H , BAHNEY C S , LEACH J K . Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair[J]. Bioact Mater, 2021, 6 (7): 1945- 1956. |
35 |
NY T , WAHLBERG P , BRÄNDSTRÖM I J M . Matrix remodeling in the ovary: regulation and functional role of the plasminogen activator and matrix metalloproteinase systems[J]. Mol Cell Endocrinol, 2002, 187 (1-2): 29- 38.
doi: 10.1016/S0303-7207(01)00711-0 |
36 | HRABIA A , SOCHA J K , SECHMAN A . Involvement of matrix metalloproteinases (MMP-2, -7, -9) and their tissue inhibitors (TIMP-2, -3) in the regression of chicken postovulatory follicles[J]. Gen Comp Endocrinol, 2018, 260, 32- 40. |
37 | NIKOLOUDAKI G . Functions of matricellular proteins in dental tissues and their emerging roles in orofacial tissue development, maintenance, and disease[J]. Int J Mol Sci, 2021, 22 (12): 6626. |
38 | GIBLIN S P , MIDWOOD K S . Tenascin-C: form versus function[J]. Cell Adh Migr, 2015, 9 (1-2): 48- 82. |
39 | CHIOVARO F , CHIQUET-EHRISMANN R , CHIQUET M . Transcriptional regulation of tenascin genes[J]. Cell Adh Migr, 2015, 9 (1-2): 34- 47. |
40 | GOOSSENS K , VAN SOOM A , VAN ZEVEREN A , et al. Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos[J]. BMC Dev Biol, 2009, 9, 1. |
41 | CUI Z F , LIU L B , KWAME AMEVOR F , et al. High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy[J]. Front Cell Dev Biol, 2020, 8, 580072. |
42 | LI X K . The FGF metabolic axis[J]. Front Med, 2019, 13 (5): 511- 530. |
43 | PUSCHECK E E , PATEL Y , RAPPOLEE D A . Fibroblast growth factor receptor (FGFR)-4, but not FGFR-3 is expressed in the pregnant ovary[J]. Mol Cell Endocrinol, 1997, 132 (1-2): 169- 176. |
44 | ZHAO W J , ZHU L L , YANG W Q , et al. LPAR5 promotes thyroid carcinoma cell proliferation and migration by activating class IA PI3K catalytic subunit p110β[J]. Cancer Sci, 2021, 112 (4): 1624- 1632. |
45 | HERNÁNDEZ-BARRANCO A , SANTOS V , MAZARIEGOS M S , et al. NGFR regulates stromal cell activation in germinal centers[J]. Cell Rep, 2024, 43 (2): 113705. |
[1] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[2] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[3] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[4] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[5] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
[6] | 余洲, 杨柏高, 李崇阳, 张培培, 曹建华, 牛一凡, 覃广胜, 赵学明. 不同发情阶段水牛唾液的DIA定量蛋白组学分析[J]. 畜牧兽医学报, 2024, 55(11): 5072-5084. |
[7] | 卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100. |
[8] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[9] | 廖伟莉, 张笑科, 曾检华, 阳林芳, 李硕, 胡梦婷, 郭懿萱, 陈赞谋, 张豪, 李加琪, 袁晓龙. 两广小花猪FOXL2基因多态性及其与几个重要经济性状的关联分析[J]. 畜牧兽医学报, 2023, 54(3): 956-965. |
[10] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. |
[11] | 何文峰, 李琛, 常洪涛, 李隆熙, 陈静, 杨国庆, 刘慧敏. 抑制伪狂犬病病毒复制的宿主蛋白的筛选与鉴定[J]. 畜牧兽医学报, 2023, 54(3): 1177-1186. |
[12] | 邢文文, 齐南南, 李梦轩, 刘吉英. YY1作用机制及在动物繁殖调控中的研究进展[J]. 畜牧兽医学报, 2023, 54(10): 4040-4049. |
[13] | 杨安琪, 李嘉诚, 宋颖, 陈欣, 靳荣帅, 赵博昊, 吴信生, 陈阳. CYP19A1对兔卵巢颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(10): 4209-4219. |
[14] | 张羽晨, 雷亚萍, 农碧丹, 庞晓敏, 张苗苗, 刘晓丽, 谷长勤, 张万坡, 程国富, 胡薛英. 自然感染鸭坦布苏病毒蛋鸭卵巢的病理学观察[J]. 畜牧兽医学报, 2022, 53(7): 2326-2332. |
[15] | 祁梦凡, 谢苏, 高若男, 孙义姗, 孙晓梅, 和军飞, 鲁慧文, 卢世豪, 陈鑫, 李清春, 黄涛. 母猪妊娠早期血液中差异表达蛋白的鉴定[J]. 畜牧兽医学报, 2022, 53(4): 1109-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||