畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 4968-4979.doi: 10.11843/j.issn.0366-6964.2024.11.016
梁慧丽1(), 解玉静1, 司博文1, 王桂英1, 姜运良2, 曹贵玲1,2,*(
)
收稿日期:
2024-03-26
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
曹贵玲
E-mail:2210190109@stu.lcu.edu.cn;cglling@126.com
作者简介:
梁慧丽(2000-), 女, 山东菏泽人, 硕士生, 主要从事动物遗传育种研究, E-mail: 2210190109@stu.lcu.edu.cn
基金资助:
Huili LIANG1(), Yujing XIE1, Bowen SI1, Guiying WANG1, Yunliang JIANG2, Guiling CAO1,2,*(
)
Received:
2024-03-26
Online:
2024-11-23
Published:
2024-11-30
Contact:
Guiling CAO
E-mail:2210190109@stu.lcu.edu.cn;cglling@126.com
摘要:
旨在了解大尾寒羊基因组遗传变异特征和群体结构,可以为更好地保护和利用大尾寒羊提供指导。本研究对170只(66只公羊,104只母羊)大尾寒羊进行了全基因组重测序,利用GATK、Manta、Plink等软件对大尾寒羊基因组遗传变异、群体结构和连锁不平衡等进行了分析,以期了解大尾寒羊基因组变异特征和群体结构。测序共获得1 599.56 G高质量数据(平均9.409 G·只-1)。大尾寒羊群体中共发现50 276 079个SNPs和7 240 540个InDel,它们多分布于基因间和内含子区域。群体的基因组结构性变异(SV)最多的类型为染色体间的易位(CTX),平均每只羊有415.82个CTX,主要分布在基因间区域;发生拷贝数变异(CNV)最多的区域在外显子,平均每只羊有175个。主成分分析显示, 大尾寒羊个体较分散,聚集不集中。结合亲缘关系、系统发育树和群体结构,将大尾寒羊分为6个家系,各家系含量差别较大,体型有差异。群体聚类分析中发现有些个体祖先成分较为单一。群体连锁不平衡(LD)分析显示LD衰减速度快,群体遗传多样性较高。驯化中受选择的基因主要与脂质代谢和产热有关。综上,大尾寒羊群体包含6个家系,遗传多样性较丰富,保种效果良好,建议对小家系进行扩繁,大家系注意减少近交,确保家系结构平衡,同时注重大尾寒羊的开发和利用。
中图分类号:
梁慧丽, 解玉静, 司博文, 王桂英, 姜运良, 曹贵玲. 基于全基因组重测序分析大尾寒羊基因组变异特征和群体结构[J]. 畜牧兽医学报, 2024, 55(11): 4968-4979.
Huili LIANG, Yujing XIE, Bowen SI, Guiying WANG, Yunliang JIANG, Guiling CAO. Analysis on Genomic Variation and Population Structure of Large-tailed Han Sheep Based on Whole Genome Resequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4968-4979.
表 1
大尾寒羊群体基因型统计"
变异类型Variation type | 基因型位点总数Total sites number | 位点缺失数量Miss sites number | 非缺失位点总数No miss sites number | 纯合型数量Homozygote number | 杂合型数量Heterozygote number | 纯合型比例/% Homozygote rate | 杂合型比例/% Heterozygote rate |
SNP | 49 530 191 | 6 950 441 | 42 679 749 | 36 554 780 | 6 124 969 | 85.649 | 14.351 |
InDel | 6 010 541 | 998 272 | 5 012 268 | 4 143 729 | 868 539 | 82.672 | 17.328 |
表 2
SNP和InDel位置信息统计"
位置Location | 基因型数量Genotype number | 比例/% Percentage | InDel数量InDel number | 比例/% Percentage |
内含子Intronic | 16 978 650 | 33.771 | 2 524 292 | 34.863 |
基因间Intergenic | 31 878 775 | 63.407 | 4 433 588 | 61.233 |
基因上游Upstream | 340 540 | 0.677 | 96 459 | 1.332 |
基因下游Downstream | 295 506 | 0.588 | 53 434 | 0.738 |
一个基因下游同时另一个基因上游Upstream/downstream | 10 598 | 0.021 | 3 173 | 0.044 |
形成终止密码子Stop gain | 2 487 | 0.005 | 365 | 0.005 |
引起终止密码子消失Stop loss | 337 | 0.001 | 36 | < 0.001 |
可变剪切位点Splicing | 4 669 | 0.009 | 3 124 | 0.043 |
基因5′-UTR区域UTR5 | 198 349 | 0.395 | 38 908 | 0.537 |
基因3′-UTR区域UTR3 | 248 668 | 0.495 | 51 835 | 0.716 |
同义突变Synonymous | 157 590 | 0.313 | - | - |
非同义突变Non-synonymous | 159 910 | 0.318 | - | - |
导致移码突变的缺失位点Frameshift deletion | - | - | 13 014 | 0.180 |
导致移码突变的插入位点Frameshift insertion | - | - | 17 228 | 0.238 |
非移码突变的缺失位点Non-frameshift deletion | - | - | 2 511 | 0.035 |
非移码突变的插入位点Non-frameshift insertion | - | - | 2 573 | 0.036 |
总计Total | 50 276 079 | 100.000 | 7 240 540 | 100.000 |
表 3
大尾寒羊各家系体尺"
家系(数量) Family | 体高/cm Body height | 体斜长/cm Body length | 胸围/cm Chest circumference | 管围/cm Shank circumference | 臀高/cm Hip height | 腰高/cm Waist height | 尾长/cm Tail length | 尾宽/cm Tail width |
家系1(17) Family 1 | 70.59±6.53 | 66.79±5.27 | 94.53±10.15 | 8.47±0.80 | 69.03±5.20 | 60.09±5.18 | 48.97±0.56 | 35.09±4.99 |
家系2(31) Family 2 | 69.90±5.98 | 66.58± 5.18 | 93.02±10.10 | 8.32±0.64 | 70.00±5.23 | 59.79±4.84 | 49.33±9.22 | 35.08±5.51 |
家系3(36) Family 3 | 69.36±5.25 | 66.99±6.03 | 95.68±9.17 | 8.21±0.63 | 68.76±4.24 | 59.56±3.73 | 51.99±9.41 | 38.43±8.11 |
家系4(15) Family 4 | 70.70±4.86 | 67.07±4.50 | 94.10±8.23 | 7.90±0.71 | 70.67±4.40 | 60.07±5.82 | 45.48±10.80 | 33.70±6.88 |
家系5(28) Family 5 | 66.43±3.34 | 62.71±4.05 | 92.80 ±9.32 | 7.93±0.50 | 65.75±2.82 | 55.88±4.15 | 48.82±6.68 | 35.18±5.34 |
家系6(35) Family 6 | 66.80±4.39 | 63.39±4.38 | 92.53±8.74 | 8.13±0.62 | 66.13±3.48 | 56.86±4.10 | 48.17±7.64 | 35.74±5.72 |
A组(4) A group | 72.63±1.44 | 69.00±4.24 | 108.13±5.01 | 8.38±0.63 | 73.75±1.89 | 60.38±2.14 | 52.63±7.32 | 33.38±3.64 |
B组(4) B group | 72.75±0.65 | 70.75±2.63 | 103.50±4.88 | 8.13±0.25 | 70.25±0.96 | 56.13±2.72 | 49.63±5.02 | 36.00±4.24 |
1 | 国家畜禽遗传资源委员会. 中国畜禽遗传资源志(羊志)[M]. 北京: 中国农业出版社, 2011. |
China National Commission of Animal Genetic Resources . Animal genetic resources in China: sheep and goats[M]. Beijing: China Agriculture Press, 2011. | |
2 |
KALDS P , LUO Q , SUN K , et al. Trends towards revealing the genetic architecture of sheep tail patterning: promising genes and investigatory pathways[J]. Anim Genet, 2021, 52 (6): 799- 812.
doi: 10.1111/age.13133 |
3 | FARHADI S , HASANPUR K , GHIAS J S , et al. Comprehensive gene expression profiling analysis of adipose tissue in male individuals from fat-and thin-tailed sheep breeds[J]. Animals (Basel), 2023, 13 (22): 3475. |
4 |
BAKHTIARIZADEH M R . Deciphering the role of alternative splicing as a potential regulator in fat-tail development of sheep: a comprehensive RNA-seq based study[J]. Sci Rep, 2024, 14 (1): 2361.
doi: 10.1038/s41598-024-52855-1 |
5 |
XU Y X , WANG B , JING J N , et al. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments[J]. Commun Biol, 2023, 6 (1): 159.
doi: 10.1038/s42003-023-04523-9 |
6 |
HOU M , YE M J , MA X L , et al. Colon microbiota and metabolite potential impact on tail fat deposition of Altay sheep[J]. Microbiol Spectr, 2024, 12 (6): e0310323.
doi: 10.1128/spectrum.03103-23 |
7 |
CAIYE Z , SONG S Z , LI M N , et al. Genome-wide DNA methylation analysis reveals different methylation patterns in Chinese indigenous sheep with different type of tail[J]. Front Vet Sci, 2023, 10, 1125262.
doi: 10.3389/fvets.2023.1125262 |
8 | LI T T , JIN M L , WANG H H , et al. Whole-genome scanning for selection signatures reveals candidate genes associated with growth and tail length in sheep[J]. Animals (Basel), 2024, 14 (5): 687. |
9 |
DENG J , XIE X L , WANG D F , et al. Paternal origins and migratory episodes of domestic sheep[J]. Curr Biol, 2020, 30 (20): 4085- 4095.e6.
doi: 10.1016/j.cub.2020.07.077 |
10 |
ZHU C Y , LI N , CHENG H P , et al. Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds[J]. Biol Open, 2021, 10 (5): bio054932.
doi: 10.1242/bio.054932 |
11 |
YUAN Z , LIU E , LIU Z , et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep[J]. Anim Genet, 2017, 48 (1): 55- 66.
doi: 10.1111/age.12477 |
12 | 章焕, 张成, 邸腾刚, 等. 大尾寒羊和小尾寒羊尾部脂肪lncRNA差异表达分析[J]. 河南农业大学学报, 2023, 57 (2): 298- 306. |
ZHANG H , ZHANG C , DI T G , et al. Differential expression analysis of tail fat LncRNA in Large-tailed Han sheep and Small-tailed Han sheep breeds[J]. Journal of Henan Agricultural University, 2023, 57 (2): 298- 306. | |
13 | 杨广礼, 刘凯迪, 付欢欢, 等. 大尾寒羊和小尾寒羊尾脂、心脂和肾脂脂肪细胞比较研究[J]. 黑龙江畜牧兽医, 2019, (19): 60-64, 179. |
YANG G L , LIU K D , FU H H , et al. Comparative study on adipocytes of tail fat, pericardiac fat and perirenal adipose tissue of Large-tailed Han sheep and Small-tailed Han sheep breeds[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019, (19): 60-64, 179. | |
14 | 张果平, 蔡中峰. 山东省绵羊、山羊种业发展现状、问题与建议[J]. 山东畜牧兽医, 2022, 43 (4): 72- 76. |
ZHANG G P , CAI Z F . The development status, problem and suggestion on sheep and goat breeding industry in Shandong Province[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2022, 43 (4): 72- 76. | |
15 |
IANNUCCI A , BENAZZO A , NATALI C , et al. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing[J]. Mol Ecol, 2021, 30 (23): 6309- 6324.
doi: 10.1111/mec.16121 |
16 |
LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760.
doi: 10.1093/bioinformatics/btp324 |
17 |
MCKENNA A , HANNA M , BANKS E , et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20 (9): 1297- 1303.
doi: 10.1101/gr.107524.110 |
18 |
WANG K , LI M Y , HAKONARSON H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38 (16): e164.
doi: 10.1093/nar/gkq603 |
19 |
CHEN X Y , SCHULZ-TRIEGLAFF O , SHAW R , et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications[J]. Bioinformatics, 2016, 32 (8): 1220- 1222.
doi: 10.1093/bioinformatics/btv710 |
20 |
BOEVA V , POPOVA T , BLEAKLEY K , et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data[J]. Bioinformatics, 2012, 28 (3): 423- 425.
doi: 10.1093/bioinformatics/btr670 |
21 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
22 |
PRICE M N , DEHAL P S , ARKIN A P . FastTree 2-approximately maximum-likelihood trees for large alignments[J]. PLoS One, 2010, 5 (3): e9490.
doi: 10.1371/journal.pone.0009490 |
23 |
ALEXANDER D H , NOVEMBRE J , LANGE K . Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Res, 2009, 19 (9): 1655- 1664.
doi: 10.1101/gr.094052.109 |
24 |
ZHANG C , DONG S S , XU J Y , et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2019, 35 (10): 1786- 1788.
doi: 10.1093/bioinformatics/bty875 |
25 |
DANECEK P , AUTON A , ABECASIS G , et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330 |
26 | 陈宏福, 韦体, 张俊松, 等. 国家级畜禽遗传资源兰州大尾羊保护现状与对策[J]. 甘肃畜牧兽医, 2023, 53 (1): 15- 18. |
CHEN H F , WEI T , ZHANG J S , et al. The conservational status and recommendation of the national livesrock and poultry genetic resource-Lanzhou Large-tailed sheep[J]. Gansu Animal Husbandry and Veterinary Medicine, 2023, 53 (1): 15- 18. | |
27 | 高毅, 巩薇娜, 张明娟, 等. 浅析广灵大尾羊资源保护[J]. 中国畜牧业, 2023, (10): 53- 54. |
GAO Y , GONG W N , ZHANG M J , et al. General views on the conservation of Guangling Large-tailed sheep[J]. China Animal Industry, 2023, (10): 53- 54. | |
28 | 赵真坚, 王书杰, 陈栋, 等. 基于低深度全基因组测序分析内江猪群体结构和遗传多样性[J]. 畜牧兽医学报, 2023, 54 (6): 2297- 2307. |
ZHAO Z J , WANG S J , CHEN D , et al. Population structure and genetic diversity analysis of Neijiang pigs based on low-coverage whole genome sequencing[J]. Acta Veterinaria et Zootechnica Sinaica, 2023, 54 (6): 2297- 2307. | |
29 | 石兰, 马梅兰, 木合塔帕·买买提江, 等. 基于全基因组重测序解析皮山红羊群体遗传结构及产羔数候选基因研究[J]. 中国畜牧兽医, 2024, 51 (2): 624- 638. |
SHI L , MA M L , MUHETAPA M M T J , et al. Study on the genetic structure and litter size candidate genes of Pishan Red sheep population based on whole genome resequencing[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (2): 624- 638. | |
30 | 马克岩, 韩金涛, 白雅琴, 等. 基于简化基因组测序的永登七山羊遗传多样性分析[J]. 畜牧兽医学报, 2023, 54 (5): 1939- 1950. |
MA K Y , HAN J T , BAI Y Q , et al. Genetic diversity analysis of Yongdeng Qishan sheep based on specific-locus amplified fragment sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1939- 1950. | |
31 | 陈开旭, 郭翠洁, 杨帆, 等. 基于全基因组重测序分析新疆细毛羊遗传多样性[J]. 新疆农业科学, 2023, 60 (5): 1292- 1300. |
CHEN K X , GUO C J , YANG F , et al. Genetic diversity analysis of Xinjiang sheep with fine wool based on whole-genome re-sequencing[J]. Xinjiang Agricultural Sciences, 2023, 60 (5): 1292- 1300. | |
32 | 余道宁, 王佟, 铁中华, 等. 基于全基因组重测序对祁连白藏羊类群的群体结构分析[J]. 中国草食动物科学, 2023, 43 (6): 12- 16. |
YU D N , WANG T , TIE Z H , et al. Population structure analysis of Qilian White Tibetan sheep group based on whole genome resequencing[J]. China Herbivore Science, 2023, 43 (6): 12- 16. | |
33 | 常晨城, 白音巴图, 周乐, 等. 内蒙古地方绵羊遗传多样性及尾椎数性状相关选择信号研究[J]. 中国畜牧杂志, 2023, 59 (12): 109- 115. |
CHANG C C , BAIYINBATU , ZHOU L , et al. Analysis on the genetic diversity and selection signatures for the caudal vertebrae number of local sheep species of Inner Mongolia, China[J]. Chinese Journal of Animal Science, 2023, 59 (12): 109- 115. | |
34 | LI J , XU H , LIU X F , et al. Insight into the possible formation mechanism of the intersex phenotype of Lanzhou Fat-tailed Sheep using whole-genome resequencing[J]. Animals (Basel), 2020, 10 (6): 944. |
35 | YI W F , HU M Y , SHI L L , et al. Whole genome sequencing identified genomic diversity and candidated genes associated with economic traits in Northeasern Merino in China[J]. Front Genet, 2024, 15, 1302222. |
36 | SUN X L , GUO J Z , LI R , et al. Whole-genome resequencing reveals genetic diversity and wool trait-related genes in Liangshan semi-fine-wool sheep[J]. Animals (Basel), 2024, 14 (3): 444. |
37 | LI R N , ZHAO Y H T , LIANG B M , et al. Genome-wide signal selection analysis revealing genes potentially related to sheep-milk-production traits[J]. Animals (Basel), 2023, 13 (10): 1654. |
38 | QIAO G Y , XU P , GUO T T , et al. Genome-wide detection of structural variation in some sheep breeds using whole-genome long-read sequencing data[J]. J Anim Breed Genet, 2024, 141 (4): 403- 414. |
39 | 刘泽民, 王岩超, 张淑二, 等. 利用微卫星和线粒体D-loop区联合分析大尾寒羊的遗传多样性[J]. 山东畜牧兽医, 2019, 40 (7): 1- 5. |
LIU Z M , WANG Y C , ZHANG S E , et al. Analysis on the genetic diversity of Large-tailed Han sheep using mtDNA D-loop and microsatellite loci[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2019, 40 (7): 1- 5. | |
40 | BAKHTIARIZADEH M R , SALEHI A , ALAMOUTI A A , et al. Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep[J]. Sci Rep, 2019, 9 (1): 9203. |
41 | HE X G , WU R H , YUN Y Y , et al. MicroRNA and circular RNA profiling in the deposited fat tissue of Sunite sheep[J]. Front Vet Sci, 2022, 9, 954882. |
42 | LIU T Y , FENG H , YOUSUF S , et al. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining factor in adipose tissue from different sheep[J]. Front Vet Sci, 2022, 9, 938311. |
[1] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[2] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[3] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[4] | 刘珍妮, 李建军, 连海, 雷小文, 谭东海, 曾庆远, 成笛, 田玉玲, 孔智伟, 谢华亮, 钟云平. 基于全基因组重测序对赣州番鸭的群体进化分析[J]. 畜牧兽医学报, 2024, 55(11): 4992-5002. |
[5] | 苟想珍, 杨军祥, 赵子惠, 冯玲霞, 陈万辉, 李玉洁, 张忠钰, 马克岩, 蒋东平, 常嵘, 文亚洲, 王珂, 马友记. 基于简化基因组测序(Super-GBS)的子午岭黑山羊保种群遗传结构评估[J]. 畜牧兽医学报, 2024, 55(10): 4334-4345. |
[6] | 林燕, 黄敏, 李秀金, 张续勐, 黄运茂, 田允波, 伍仲平. 利用全基因组重测序数据检测8个鸭品种基因组拷贝数变异[J]. 畜牧兽医学报, 2023, 54(9): 3700-3709. |
[7] | 王静琳, 刘阳光, 徐启隆, 陈朔, 邓在双, 程诗雨, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 皖岳黑猪基因组遗传变异分析及特征SNPs挖掘[J]. 畜牧兽医学报, 2023, 54(7): 2783-2793. |
[8] | 路畅, 董磊, 张万锋, 高鹏飞, 郭晓红, 蔡春波, 曹果清, 李步高. 基于全基因组重测序对晋汾白猪单核苷酸多态性位点鉴定和筛选[J]. 畜牧兽医学报, 2023, 54(7): 2761-2771. |
[9] | 赵真坚, 王书杰, 陈栋, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 唐国庆. 基于低深度全基因组测序分析内江猪群体结构和遗传多样性[J]. 畜牧兽医学报, 2023, 54(6): 2297-2307. |
[10] | 马克岩, 韩金涛, 白雅琴, 李讨讨, 马友记. 基于简化基因组测序的永登七山羊遗传多样性分析[J]. 畜牧兽医学报, 2023, 54(5): 1939-1950. |
[11] | 高超群, 曹然然, 杜文苹, 胡晓玉, 雷艳茹, 李文婷, 康相涛. 基于全基因组SNP标记分析中国地方鸡品种的遗传多样性和种群结构[J]. 畜牧兽医学报, 2023, 54(2): 554-562. |
[12] | 胡紫平, 王立刚, 宗文成, 侯任达, 苏艳芳, 牛乃琪, 王立贤, 王源, 张龙超. 基于基因组SNP和ROH的剑白香猪群体遗传结构解析[J]. 畜牧兽医学报, 2023, 54(10): 4117-4125. |
[13] | 袁娇, 徐国强, 周翔, 徐三平, 李胜, 黎望明, 刘榜. 基于SNP芯片监测通城猪的保种效果[J]. 畜牧兽医学报, 2022, 53(8): 2514-2523. |
[14] | 刘宏祥, 沈永杰, 张丽华, 章双杰, 王靖, 朱杰, 陈瑜哲, 朱春红, 宋卫涛, 张丹, 陶志云, 徐文娟, 刘红林, 李慧芳. 基于简化基因组测序的娄门鸭遗传多样性评价[J]. 畜牧兽医学报, 2022, 53(6): 1735-1748. |
[15] | 李静, 程鲁光, 万九生, 陈超, 邓卫东, 张正红, 张志, 黎立光. 昆明犬群体遗传结构及受选择基因分析[J]. 畜牧兽医学报, 2022, 53(5): 1455-1464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||